
Plasma Undulator Based on Laser Excitation of Wakefields in a Plasma Channel

S. G. Rykovanov,* C. B. Schroeder, E. Esarey, C. G. R. Geddes, and W. P. Leemans
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 7 November 2014; published 6 April 2015)

An undulator is proposed based on the plasma wakefields excited by a laser pulse in a plasma channel.
Generation of the undulator fields is achieved by inducing centroid oscillations of the laser pulse in the
channel. The period of such an undulator is proportional to the Rayleigh length of the laser pulse and can be
submillimeter, while preserving high undulator strength. The electron trajectories in the undulator
are examined, expressions for the undulator strength are presented, and the spontaneous radiation is
calculated. Multimode and multicolor laser pulses are considered for greater tunability of the undulator
period and strength.
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Undulator magnets have numerous applications in beam
physics, including the production of radiation for light
source applications and the cooling of particle beams
[1]. The wavelength λ of the radiation produced by an
electron undergoing oscillations inside an undulator is
λ ¼ λuð1þ K2=2Þ=2γ2, where λu is the undulator period,
γ is the Lorentz factor of the electron, and K is the
undulator strength parameter. Presently, the undulator
period is limited to >1 mm using conventional magnetic
undulators [2]. Reducing λu is highly beneficial as it will
decrease the required electron energy for the same specified
radiation wavelength and, hence, decrease the size of the
light source. Undulators with periods less than or on the
order of a millimeter, often referred to as microundulators,
are, therefore, of great interest. Several microundulator
ideas have been proposed including electrostatic undulators
[3,4], crystalline undulators [5], rf-based [6], laser-plasma-
based [7–9], and optical undulators [10–17]. In this Letter
we propose a microundulator based on controlling the
transverse forces experienced by an electron beam inside a
laser-excited plasma channel. In this concept, a laser
injected into a plasma channel excites plasma waves, with
the appropriate transverse fields created by laser pulse
centroid oscillations in the channel. Together with recent
impressive progress in compact laser-plasma electron
accelerators (LPAs) [18], this new approach may lead to
an extremely compact free-electron laser (FEL).
Plasma channels can be used to guide laser pulses with

relativistic intensities (i.e., I½W=cm2�≳ 1018=ðλL½μm�Þ2,
where I and λL are the laser pulse intensity and wavelength,
respectively), and laser guiding in plasma channels is
routinely used for efficient electron acceleration in LPAs
[19–22]. Consider a preformed plasma density profile that
is assumed to be parabolic in the direction transverse to the
laser propagation

nðrÞ ¼ n0½1þ ðΔn=n0Þr2=w2
0�; ð1Þ

with r the transverse coordinate, n0 the on-axis electron
density, and Δn the channel depth. For moderate laser
intensities, the laser spot size will remain constant during
the propagation in such a channel and will be equal to w0 if
the channel depth is equal to Δn ¼ ðπrew2

0Þ−1, where re ¼
e2=mc2 is the classical electron radius [18]. If the laser
pulse enters the channel off axis or under some angle, the
laser beam centroid will oscillate as it propagates, with
characteristic oscillation length equal to the Rayleigh range
ZR ¼ πw2

0=λL. For P < Pc and a0 < 1, where P is the laser
pulse power, Pc½GW�≃ 17ðkL=kpÞ2, with kL ¼ 2π=λL and
kp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πren0
p

, and a0 ¼ eAL=mc2 is the normalized laser
vector potential, the laser beam centroid oscillates accord-
ing to [23,24]

xcðzÞ ¼ xci cosðz=ZR þ φÞ; ð2Þ

where xci is maximum centroid displacement and φ is an
arbitrary phase. Ponderomotively driven plasma waves, or
wakefields, created inside the plasma channel by a short
laser pulse with matched spot size and oscillating centroid
will follow the laser beam centroid provided kpZR ≫ 1. As
will be shown below, this can be used for controlling the
transverse fields of the plasma wave. An electron beam
injected in such a plasma undulator will experience trans-
verse oscillations leading to efficient radiation generation.
An illustration of the plasma undulator is depicted in Fig. 1:
A short laser pulse (depicted with red color) is propagating
through the plasma channel and exhibits oscillatory cent-
roid motion due to an initial laser centroid displacement.
Wakefields created in the plasma also follow the oscillatory
laser centroid motion. An electron beam injected behind the
laser pulse (depicted by a collection of points) experiences
transverse, thus focusing, fields (lower panel) with periodic
structure set by the laser centroid oscillation. The periodi-
cally changing focusing field serves as an undulator and the
oscillating electrons produce radiation.
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We start by deriving the structure of the wakefields
excited by a laser pulse undergoing centroid oscillations
inside a plasma channel. We assume that the channel is
shallow, kpw0 > 1. We also assume that the laser vector
potential amplitude is small, a0 < 1, and linear plasma
theory can be applied (see, e.g., Ref. [18] and references
therein). We take the laser pulse profile to be Gaussian in all
dimensions (i.e., the laser pulse intensity is proportional to
I ∝ exp ½−2r2=w2

0� exp ½−2t2=τ2L�). The plasma is under-
dense, such that the laser pulse travels through the plasma
near the speed of light in vacuum c. In the following, the z
axis is the laser propagation or channel axis. Using linear
plasma theory [18], the potential of the laser-excited plasma
waves can be expressed as

ϕðx; ξÞ ¼ −a20C sin ðkpξÞe−2½ðx−xcÞ2þy2�=w2
0 ; ð3Þ

where ϕ ¼ eΦ=mc2 is the normalized scalar potential, C ¼ffiffiffiffiffiffiffiffi
π=2

p ðkpτL=4Þ expð−k2pτ2L=8Þ for a linearly polarized
Gaussian laser pulse (for an optimized laser pulse duration
C ¼ ffiffiffiffiffiffiffiffiffiffi

π=8e
p

≈ 0.38, and C → 2C for a circularly polarized
laser), ξ ¼ z − ct, and xc is given by Eq. (2). The electric
fields, under the assumptions above, are E=E0 ¼ −k−1p ∇ϕ,
where E0 ¼ mc2kp=e, and the equation of motion for an
electron in the wakefield is dðp=mcÞ=dðkpctÞ ¼ −E=E0.
We consider injection of the electron beam at a wake phase
such that Ez ≃ 0. For a single electron, or ultrashort beam,
one can consider injection at cosðkpζÞ ¼ 0, where Ez ¼ 0.
For an extended beam one can consider a beam shape and
number of electrons that will fully load the wakefield, i.e.,
cancel the longitudinal wakefield created by the laser pulse
with the wakefield created by the electron beam. (Beam
loading is discussed below.)
Consider jx − xcj ≪ w0; i.e., the amplitudes of both the

laser pulse centroid and electron beam oscillations are
small compared to the laser spot size. (Below we discuss
the influence of the exponential term in the wakefields
on the radiation spectra.) In this limit, the motion of an
electron with relativistic gamma factor γ0 ≫ 1, injected in
the phase where Ez ¼ 0 and Ex is positive and has

the maximum absolute value, is described by a linear
harmonically driven oscillator equation,

d2x=dz2 þ k2βx ¼ k2βxci cos ðz=ZR þ φÞ; ð4Þ

where

kβ ¼
�
4a20C
γ0w2

0

�
1=2

ð5Þ

is the betatron wave number. (The equation of motion in the
transverse direction orthogonal to the laser beam centroid
motion is d2y=dz2 þ k2βy ¼ 0.) The transverse momentum
of the electron is

px=mc ¼ aβx sin ðkβzþ ψβÞ þ au sin ðkuzþ φÞ; ð6Þ

where ku ¼ 1=ZR, ψβ is a phase determined by the electron
injection relative to the laser beam centroid oscillation,

aβx ¼ γ0kβ

����xm −
ðkβZRÞ2xci
1 − ðkβZRÞ2

���� ð7Þ

¼ ½ðγ0kβx0 þ aukβZR cosφÞ2 þ ðau sinφÞ2�1=2 ð8Þ

is the betatron strength parameter, with xm the maximum
transverse displacement of the electron with respect to the
channel axis, x0 ¼ xðz ¼ 0Þ [Eq. (8) assumes dx=dz ¼ 0 at
z ¼ 0], and

au ¼
γ0kuk2βxci
k2u − k2β

ð9Þ

is the undulator strength parameter. The electron is oscil-
lating with two characteristic spatial periods: the betatron
motion (with period 2π=kβ) and the motion induced by the
laser pulse centroid evolution (with period 2πZR). The laser
beam centroid oscillations generate undulator motion with
the same period

λu ¼ 2π2w2
0=λL: ð10Þ

For kβZR ≪ 1, or 2πa0
ffiffiffiffiffiffiffiffiffiffi
C=γ0

p
≪ λL=w0, the undulator

strength parameters may be approximated as

au ≈ 4πa20Cxci=λL: ð11Þ

The condition kβZR ≪ 1 approximately holds for the
parameters considered in this Letter. Note that the undulator
strength parameter is independent of the electron transverse
position. This is in contrast to a simple plasma focusing
channel [25], such as that considered by an ion-channel
laser [26]. The achievable undulator strength au, given by
Eq. (11), and λu is shown in Fig. 2 for different laser pulse
parameters and initial centroid displacements. An undulator

FIG. 1 (color online). Schematic of the plasma undulator.
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strength on the order of unity can be achieved for
undulators with millimeter period.
The properties of the radiation produced by a relativistic

electron oscillating in undulator and focusing fields are well
known [1,2,27,28]. Specifically, the nth harmonic of the
normalized undulator radiation wave number is

κn ¼
nκ

1þ a2u=2þ a2β=2þ γ20θ
2
; ð12Þ

where κ ¼ k=ð2γ20kuÞ and θ is the azimuthal angle, with
γ0θ ≪ 1 and a2β ¼ a2βx þ a2βy. For sufficiently high current
and beam quality, partially coherent radiation may be
generated by the FEL mechanism [28]. For the FEL
instability to grow, beam parameters must be chosen such
that ha2βi=2 is less than the FEL parameter. For a matched,
symmetric beam on axis, the rms betatron strength param-
eter is, from Eq. (8),

ha2βi ¼ γ0kβεn þ a2u½ðkβZRÞ2cos2φþ sin2φ�; ð13Þ

where εn is the normalized emittance of the electron beam,
and ha2βi is minimized for φ ¼ 0; π, with kβZR < 1. This
plasma undulator configuration is in a strongly focused
regime, and for typical LPA beam parameters [18] with
ultralow emittance [29,30], the beam transverse size will be
smaller than the radiation mode size.
Consider the radiation produced by a LPA-generated

electron beam propagating through a plasma undulator with
the laser-plasma parameters n0 ¼ 1018 cm−3, λL ¼ 1 μm,
w0 ¼ 7 μm, a0 ¼ 0.28, and with the laser matched to
the plasma channel with centroid oscillation amplitude
xci ¼ 2.5 μm. Consider an electron beam phased such that
kpζ ¼ 3π=2 and φ ¼ π, with γ0 ¼ 1000 (unless stated
otherwise, the rms energy spread of the electron beam is
assumed to be σγ=γ0 ¼ 1%). For these parameters, λu ¼
0.97 mm and au ¼ 1.01. For the radiation calculation, we
have assumed that an electron beam is matched to the

focusing forces [25]. Numerical results using VDSR [31]
in 2D, with Nu ¼ 30 undulator periods and εn ¼ 0.1 μm,
are summarized in Fig. 3. Figure 3 shows the radiation
spectrum d2Nph=½Neðγ0θÞdðγ0θÞdκ�, where Nph is the
number of photons andNe is the number of beam electrons,
as a function of the normalized wave number κ and
normalized azimuthal angle γ0θ. Also shown is the on-
axis radiation spectrum (solid white line). The peak of the
fundamental harmonic of the undulator radiation spectrum
is located at κ1 ¼ ð1þ a2u=2þ ha2βi=2Þ−1 ≈ 0.62. The har-
monics of the undulator radiation given by Eq. (12) are also
shown (white dashed curves). Only odd harmonics are
generated on axis, whereas both odd and even harmonics
are generated off axis. The electron beam in the plasma
undulator also exhibits betatron oscillations and the peak of
the betatron radiation is located at κβ ¼ κβZRð1þ a2u=2þ
ha2βi=2Þ−1 ≈ 0.15. The magnitude of betatron radiation is
much smaller than the radiation generated at the undulator
frequency (since a2β ≪ a2u). Note the appearance in Fig. 3 of
additional emission at the sum frequencies κ1 þmκβ, with
m a positive integer.
Figure 4 depicts the on-axis radiation spectrum as a

function of normalized frequency κ for beams with differ-
ent values of emittance and energy spread, for the plasma
undulator with the same parameters as above. Figure 4
shows the on-axis radiation spectrum from an ideal beam
(zero emittance and no energy spread) calculated using
VDSR (green curve) and using standard undulator radiation
theory (dashed black curve) [28]. In Fig. 4, the on-axis
radiation spectrum produced by electron beams with εn ¼
0.1 μm (blue curve) and εn ¼ 0.025 μm (red curve) are
shown. One can see the expected effect of electron beam
divergence; the lower the divergence, the narrower the
spectrum. Figure 4 also shows (magenta curve) the radi-
ation for a beam with εn ¼ 0.1 μm, but with the exponen-
tial term in the wakefield included [cf. Eq. (3)]. The
spectrum peak is located at higher frequency due to the

a
u

λ
u 
(mm)

(a)

(b)

(c)

(d)

FIG. 2 (color online). Undulator strength au given by Eq. (11)
versus undulator period λu for several values of laser amplitude,
wavelength, and centroid displacement: (a) a0 ¼ 0.28,
λL ¼ 1 μm, and xci=w0 ¼ 0.2; (b) a0 ¼ 0.28, λL ¼ 1 μm, and
xci=w0 ¼ 0.3; (c) a0 ¼ 0.5, λL ¼ 10 μm, and xci=w0 ¼ 0.4; and
(d) a0 ¼ 0.5, λL ¼ 1 μm, and xci=w0 ¼ 0.2.
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FIG. 3 (color online). Normalized radiation spectrum generated
by a beam with εn ¼ 0.1 μm and σγ=γ0 ¼ 0.01, in a plasma
undulator with au ¼ 1.01 and Nu ¼ 30. Harmonics, Eq. (12), are
shown with white dashed curves. The spectrum for θ ¼ 0 (arb.
units) is shown with white solid line. Peaks corresponding to
betatron radiation, fundamental, and third harmonics of the
undulator radiation are annotated with white arrows.
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decrease in the undulator strength. Approximately, the
strength of the undulator decreases by a factor of
expð−2x2ci=w2

0Þ due to the decrease of the focusing
field amplitude off axis. For the above example,
expð−2x2ci=w2

0Þ ≈ 0.8. The decrease in field strength due
to the exponential term will depend on the particular
situation and can be mitigated by using stronger laser
pulses with smaller initial centroid displacements. In the
case of an electron bunch with finite emittance and energy
spread, the undulator radiation spectrum is broadened
compared to the case of a single electron, resulting from
the beam angular divergence and energy spread.
In our analysis, we have assumed that the electron beam is

loaded at the phase where Ez ¼ 0 and have neglected the
effects due to the longitudinal field Ez. This is valid for
the case when longitudinal electron beam size is much
smaller than the plasma wavelength (and sufficiently low
beam charge) or when a beam of proper shape cancels
the longitudinal electric field due to beam loading.
Regardless of the beam length, beam loading will limit
the amount of charge [32]. The effect of beam loading
on the transverse focusing forces of the wake will be
small provided that xci ≫ rbm, where rbm is the transverse
size of the electron beam matched to the wake focusing
forces [25]. The effect of electron beam dephasing can be
mitigated by using appropriate plasma density taper [33].
Additional control of the plasma undulator parameters

can also be achieved using the beating of multiple laser
pulses with different (odd and even) Hermite-Gaussian
modes inside the plasma channel. Plasma wave excitation
using multiple laser modes was considered in Ref. [34].
Using the same formalism as above, an electron in the
wakefield driven by two linearly polarized Hermite-
Gaussian laser modes will produce undulator and betatron
radiation with the parameters

kβx ¼
�
4Cα2x
γ0w2

0

�
1=2

; ð14Þ

ku ¼
���� k

2
p

2

�
1

kn
−

1

km

�
þ ðnþ 1Þ

ZR;n
−
ðmþ 1Þ
ZR;m

����; ð15Þ

au ¼
Cjδn;mjku

w0ðk2u − k2βÞ
e−ðΔkÞkpL2=2 cosh ½ðΔkÞkpL2�; ð16Þ

with n (even) and m (odd) the mode numbers,
Δk ¼ kn − km, ZR;n and ZR;m are the Rayleigh lengths
of two laser pulses [both laser pulses have equal matched
radii w0 and equal rms (intensity) pulse lengths L], and it is
assumed kn; km ≫ kp. The coefficient α2x, assumed to be
greater than zero, is

α2x ¼
a20;n
n!2n

�
n!

ðn=2Þ!
�
2

ð2nþ 1Þ − 4a20;m
m!2m

�
m!

ðm−1
2
Þ!
�
2

; ð17Þ

where a0;n and a0;m are the amplitudes of the laser modes
(defined in Ref. [34]). Note that, in general, the focusing is
asymmetric, kβx ≠ kβy; however, additional laser pulses,
polarized orthogonally (with ΔkL ≫ 1) or temporally
separated, can be used, following the techniques described
in Ref. [34], to control kβy. The undulator strength is given
by the parameter

δn;m ¼ 4a0;na0;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!m!2nþm−1

p ð−1Þðnþm−1Þ=2 n!m!

ðn
2
Þ!ðm−1

2
Þ! : ð18Þ

If the mode frequency difference is larger than the plasma
frequency, so that Δk ≫ kp ∼ 1=L, then the wake excita-
tion averages over the fast oscillation and au ≈ 0.
For the case when the two laser modes have the same

wavelength and considering the modes n ¼ 0 and m ¼ 1,
the undulator period is given by Eq. (10), and, for ku ≫ kβ,
the undulator strength is

au ≈ 2πa0;0a0;1Cw0=λL: ð19Þ

Using multiple modes enables larger undulator strengths
(by a factor≈w0=xci). Note that a Gaussian laser with a small
centroid displacement is equivalent to this case (k0 ¼ k1): a
modal decomposition of a Gaussian with a centroid offset
yields a0;0 ¼ a0 and a0;1 ¼ a0xci=w0, for xci ≪ w0.
The strong focusing of the plasma wave (large aβ) will

tend to suppress the FEL instability, since the transverse
momentum of each electron will vary with betatron
amplitude. As demonstrated in Ref. [34], using multiple
Hermite-Gaussian laser modes can reduce the strong
focusing of the wakefields (reduce kβ). Consider the
following example of a wakefield excited by two laser
modes: n ¼ 0, m ¼ 1, a0;0 ¼ 0.145, a0;1 ¼ 0.1, λ0 ¼ λ1 ¼
0.8 μm, and both modes matched to the plasma channel
(n0 ¼ 1018 cm−3) with w0 ¼ 7 μm. An injected beam will

FIG. 4 (color online). On-axis spectrum showing the funda-
mental undulator radiation for several emittance values: εn ¼
0.1 μm (blue curve), εn ¼ 0.025 μm (red curve), ideal pointlike
electron beam with zero emittance and no energy spread [from
numerical calculations (green curve) and from theory (dashed
black curve)], and εn ¼ 0.1 μm with exponential term in the
wakefield included (magenta curve). All beams except the ideal
pointlike electron beam case have an energy spread σγ=γ0 ¼ 1%.
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experience a 1.2 mm undulator period with strength
au ¼ 1.2. Assuming γ0 ¼ 515 and εn ¼ 0.1 μm, the beam
will generate 4 nm radiation. The betatron period is k−1β ≃
3.3λu with average betatron strength ha2βi≃ 0.01 for a
matched beam. For 300 A (3 pC in 10 fs), the FEL
parameter is ρ ≈ 0.008.
In conclusion, we have proposed a laser-plasma-based

concept for a compact undulator capable of producing
submillimeter wavelength and undulator strength on the
order of unity. Such a plasma undulator is produced by
initiating pulse centroid oscillations in a plasma channel
or by using multiple laser pulses with different Hermite-
Gaussian modes (even and odd). Such a laser-plasma-based
undulator offers great flexibility and tunability. For exam-
ple, polarization control of the plasma undulator is achieved
by the direction of the initial laser pulse centroid displace-
ment, and elliptical polarization with arbitrary ellipticity
can be produced by injecting the laser pulse into the
channel off axis and at an angle.
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