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We experimentally study nonlinear force propagation into granular material during impact from an
intruder, and we explain our observations in terms of the nonlinear grain-scale force relation. Using high-
speed video and photoelastic particles, we determine the speed and spatial structure of the force response
just after impact. We show that these quantities depend on a dimensionless parameter,M0 ¼ tcv0=d, where
v0 is the intruder speed at impact, d is the particle diameter, and tc is the collision time for a pair of grains
impacting at relative speed v0. The experiments access a large range of M0 by using particles of three
different materials. When M0 ≪ 1, force propagation is chainlike with a speed, vf, satisfying vf ∝ d=tc.
For larger M0, the force response becomes spatially dense and the force propagation speed departs from
vf ∝ d=tc, corresponding to collective stiffening of a strongly compressed packing of grains.
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The topic of impact into a granular medium is of
considerable recent interest [1–11], and intruder impacts
are common in many natural and manmade processes. In
addition, since grains near the free surface are uncom-
pressed, force transmission in this region involves inher-
ently nonlinear effects that are of interest in their own right
[12–18]. That is, particularly during the important initial
stages of impact, force propagation is always nonlinear. In
this Letter, we describe experimental studies of the speed
and spatial structure of nonlinear force propagation caused
by an impact of a massive intruder into vertically oriented
2D granular beds of frictional photoelastic disks [9,11].
We specifically focus on understanding the nature of this
nonlinear force propagation over a wide range of impact
velocities.
For moderate-speed impacts into frictional granular

materials, transmitted forces are not homogeneous.
Rather, they are carried dynamically on a relatively small,
quasilinear subset of grains [9], resembling the force chains
that are common in quasistatic systems. Therefore, under-
standing the nature and role of the force networks is crucial
to understanding force propagation. Additionally, force
propagation depends on the interparticle force law, fðδÞ,
where δ is the particle compression. Typically f ∝ δα, with
α > 1. The complex spatial structure of the strong force
network and the nonlinear interparticle force law mean that
a macroscopic linear wave description is invalid for impacts
onto free granular surfaces, or any other situation where
dynamic stresses are large compared to the original con-
fining pressure [15–21]. For instance, the stiffness at a
contact, −df=dδ ∝ δα−1 [22–24], approaches zero in the
limit when the system is uncompressed, and thus the linear
sound speed vanishes. Forces then propagate with a speed,
vf, that is very sensitive to α and the strength of the
propagating forces [12–14,17,18].

Several recent studies are particularly germane to this
work: model studies by Gomez et al. [17] on shock
propagation in systems of frictionless grains, model studies
by Nesterenko [12,13] on solitons that propagate along 1D
granular chains, and experiments by van den Wildenberg
et al. [18]. In the nonlinear limit, all of these show a force
propagation speed, vf, that scales as a power law in the
maximum grain velocity (or the characteristic driving
velocity), v0:

vf
vb

∝
�
v0
vb

�ðα−1Þ=ðαþ1Þ
; ð1Þ

where vb is a characteristic sound speed inside a grain.
Experiments typically differ frommodels that lead to this

equation [12,13,17], in that they involve dissipative grain
interactions and force chains that are not simply lines of
particles. For instance, the derivation of Eq. (1) in [17]
assumes conservative interactions, equipartition of energy
between kinetic and potential, and relatively homogeneous
fronts. In contrast, our particles have nonconservative
interactions (nonvanishing friction and restitution coeffi-
cients less than 1), and forces propagate along complex,
inhomogeneous force chains [9], implying very rough
fronts. Hence, we raise and address three questions:
(1) How do friction and dissipation affect force trans-
mission, and to what extent do predictions from frictionless
models with only normal forces apply? (2) What are the key
aspects that control transmission along the force networks?
(3) As the relative impact speed grows, what structural
changes occur in the force networks, and how do such
changes affect force transmission? We note time-of-flight
experiments in a 3D system in [18] included friction and
dissipation, and these results are consistent with Eq. (1).
However, they are limited to v0 ≪ vf and do not consider
the spatial structure of the forces.
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Our experimental apparatus [9–11] consists of two
plexiglas sheets (0.91 m× 1.22 m× 1.25 cm) separated
by a thin gap (3.3 mm) filled with photoelastic disks
(3 mm thick). Intruders are machined from bronze sheet
(bulk density of 8.91 g=cm3 and thickness of 0.23 cm) into
disks of diameters D of 6.35 cm, 12.7 cm, and 20.32 cm.
We drop these intruders from a height H ≤ 2.2 m, through
a shaft connected to the top of the apparatus, yielding
v0 ≃ ð2gHÞ1=2 ≤ 6.6 m=s. A Photron FASTCAM SA5
records results at frame rates of 10, 25, and 40 kHz for
the soft, intermediate, and hard particles, respectively. To
measure v0, we track the intruder and take a numerical
derivative as in [9–11]. The intensity of the photoelastic
images yields the spatial structure of forces and allows us
to measure vf (with an uncertainty of ∼� 5%).
The impact speed, v0, is limited, so we use a novel

approach where we vary v0=vb, and hence vf=vb, by using
particles made from three photoelastic materials, each with
a different stiffness (but otherwise similar). Softer grains
transmit forces more slowly (i.e., smaller vb), allowing us
to access v0 approaching typical vf. Two sets of particles
are made from sheets of polyurethane from Precision
Urethane with hardness ratings of Shore 60 A (softest)
and Shore 80 A (intermediate), cut into disks of 6 and 9 mm
diameter. A third set of particles is cut from the stiffest
material, PSM-1, manufactured by Vishay Precision
Group, which is cut into disks with diameters of 4.3 and
6 mm. In separate experiments, we compress individual
particles between two plates (similar to particle compres-
sion in force chains) and find that a single scaling relation
captures the behavior of all types of particles; see
Supplemental Material for details [25]:

f ¼ E�wd
�
δ

d

�
α

; ð2Þ

where f is the compression force, w is the particle thick-
ness, d is the particle diameter, δ is the displacement, and
α ≈ 1.4 for all particles. The effective Young’s modulus,
E�, is set by properties of the bulk material, including
effects from the Poisson ratio and possibly other geomet-
rical considerations [17]. We measure E� ≈ 3 MPa for
Shore 60 A, E� ≈ 23 MPa for Shore 80 A, and E� ≈
360 MPa for PSM-1. Additionally, when we uniaxially
compress small collections of roughly 100 particles by
an amount Δ, we observe force chains, and we find a
collective force response F ∼ Δα, with α ≈ 1.4, for mod-
erate Δ (see Supplemental Material [25]). However, for
large Δ with the softest particles, the force network is no
longer chainlike, and α increases to α ≈ 2.2 at the maxi-
mum F that we measure. This point is crucial in our
analysis below.
To combine and generalize the results from all impacts,

we use a simple framework centered on the collision time
between grains, which contains the details of the interparticle

force law. Specifically, we show that the nature of force
propagation depends on a dimensionless parameter, M0 ¼
tcv0=d, where d is the particle diameter and tc is the collision
time for a pair of grains impacting at relative speed v0.
We note that M0 can be interpreted as the ratio of tc to the
time for the intruder to move one grain diameter, d=v0 (this
is similar to a dimensionless number used by Campbell [26]
in simulations of shear flows). Equation (2) can be used
to calculate tc, and thus M0, as shown in Supplemental
Material [25]:

tc ¼ dvð1−αÞ=ð1þαÞ
0 v−2=ðαþ1Þ

b CðαÞ; ð3Þ

where CðαÞ depends on α but otherwise is a constant,
vb ¼ ðE�=ρÞ1=2, and ρ is the bulk mass density of the
particles. We note a numerical value of Cð1.4Þ ≈ 4.35. As
expected for a nonlinear force law, tc depends on the relative
impact speed between grains, v0. Note that Eq. (3) implies
that M0 ¼ CðαÞðv0=vbÞ2=ðαþ1Þ.
At impact, the intruder makes strong contact with a

subset of grains around its perimeter, and forces propagate
into the material from these contacts, as in Fig. 1 and
Supplemental Videos 1–3 [25]. Figure 1 shows that the
fraction of strong contacts and the spatial structure of the
transmitted forces vary with M0. For smallM0, as in [9,11],
forces are transmitted into the material by compression
pulses that travel along a spatially sparse, chainlike force
network. The result is a very rough front. As M0 increases,
M0 → 1, the force network becomes nearly space filling,
and the front becomes smoother.

FIG. 1. Force propagation after impacts with v0 ≈ 5 m=s.
(a) Hard particles (M0 ≈ 0.1) show sparse, chainlike force
propagation. (b) Forces for intermediate particles (M0 ≈ 0.3)
are more dense spatially, but still relatively chainlike. (c) Soft
particles (M0 ≈ 0.6) show a dense force structure that propagates
with a well-defined front.
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We determine vf with space-time plots of photoelastic
images, as in Fig. 2(a)–(c), which shows the total photo-
elastic intensity as a function of time and of distance from
the leading edge of the intruder. We average over an angular
region spanning 90° beneath the intruder, and thus coarse
grain the otherwise inhomogeneous force response. White
(black) corresponds to a strong (weak) photoelastic
response [note, the grey region at the top of Fig. 2(c)
represents the region just beneath the intruder in Fig. 1(c),
where particles are compressed sufficiently that the
photoelastic response actually decreases slightly, due to

contrasting bright and dark fringes]. The slope of the leading
edge in each space-time plot gives vf. In Fig. 1(d), we plot
vf as a function of v0 for all impacts, along with fit lines
vf ¼ 1.2vbðv0=vbÞðα−1Þ=ðαþ1Þ, according to Eq. (1), with
α ¼ 1.4. This expression, with prefactor of 1.2, fits all the
data satisfactorily, except for the softest particles at higher
velocity impacts (v0 > 3 m=s), where a modified relation is
needed. Figure 2(e) shows this data when all velocities are
scaled by vb, as in Eq. (1). The fit lines shown have exponent
1=6 (solid line) and 3=8 (dashed line), following from
Eq. (1), with exponents α ¼ 1.4 and α ¼ 2.2, respectively.
The latter corresponds to soft particles under significant
compression, as discussed previously. In Supplemental
Material [25], we show data that demonstrate that the
pressure during high velocity impacts into soft particles
corresponds to the pressure where the exponent transitions
from α ≈ 1.4 to α ≈ 2.2 in static compression tests. Thus,
Eq. (1) is still satisfied in this regime, provided α in Eq. (3) is
replaced with α ≈ 2.2.
Figures 1 and 2 reveal important similarities and

differences with previous theoretical work. As in the
simulations from [17], there is shocklike behavior in our
system of frictional particles, satisfying Eq. (1) for impacts
at low M0. But unlike [17], these shocks are carried by a
subset of particles, so that the effective front is not at all
smooth. This network of force chains is roughly analogous
to the 1D chains in [12,13], but the network is clearly more
complex than a single linear chain. For largerM0, new force
networks form before old ones have disappeared, leading
to denser networks as the intruder advances. As M0 → 1
(high speed impacts into soft particles), all grains near the
intruder are compressed, with a clear boundary between
compressed and uncompressed grains (i.e., similar to [17]),
but this is the regime where the scaling we observe departs
from Eq. (1).
We propose that the key feature for propagation at low

M0 is the fact that forces are carried from grain to grain
along force chains in a time of order tc, which is the time to
load a nonlinear contact. Along a line of grains in the
quasilinear network, the speed for force transmission is
simply vf ∝ d=tc (somewhat similar to an argument
presented to describe Newton's cradle experiments [27]),
which reproduces Eq. (1). Using the form from Eq. (3), we
obtain

vf ∝
d
tc
¼ vðα−1Þ=ðαþ1Þ

0 v2=ðαþ1Þ
b ½CðαÞ�−1; ð4Þ

which in turn yields Eq. (1). We emphasize that this
scenario does not require energy conservation, and it does
not require simple linear chains. For instance, even with
restitutional losses during interparticle interactions, tc will
still have a similar form to Eq. (3) if the contact force is
initially zero or very small. This expression can be applied
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FIG. 2 (color online). (a)–(c) Space-time plots of propagating
forces shown in Fig. 1 (see text for details). Dashed white lines
indicate vf . (d) These are plotted versus v0. Symbol shape
denotes particle stiffness (squares/triangles/circles are hard/
medium/soft, respectively), and color denotes intruder diameter
(red/blue/black for 6.35=12.7=20.32 cm, respectively). (e) Plot of
data in (d), but with vf and v0 normalized by vb. The fit lines
correspond to Eq. (1) with α ≈ 1.4 (solid line) and α ≈ 2.2
(dashed line); see text for discussion.
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in related systems, given a force law, even for spatially
complex, nonconservative forces.
Figure 3 shows a summary of our data in the context of

the collision time framework. Figure 3(a) shows the data
from Fig. 2, plotted as a function of M0. For M0 < 0.4, we
find vf ≈ 5.3ðd=tcÞ, whereas at larger values of M0, vf
increases faster than predicted by this scaling relation. The
spatial density of the forces also changes with increasing
M0, as seen in Fig. 1, and the front becomes much
smoother. To quantify this and compare it to the departure
from vf ∝ d=tc, we define a participation ratio P as the
fraction of grains beneath the intruder exhibiting a strong
force. To estimate P, we examine all images between 4.5tc
and 5.5tc. We threshold each image into bright and dark
pixels, such that bright pixels are a fixed percentage greater
than the background intensity: 25% for hard particles, 30%
for intermediate stiffness particles, and 45% for the soft
particles. These values are chosen such that the resulting
black-and-white image appears most similar to the original
photoelastic image (they are slightly different for each
material, due to differences in photoelastic response,
camera settings, and lighting conditions). We calculate
the average density of bright pixels in a quarter annulus
extending downward from the intruder by 25d ≈ 15 cm,
corresponding to the distance the front would travel in 5tc.

This value is averaged from 4.5tc to 5.5tc and divided by
the approximate packing density of 0.8. Figure 3(b) shows
the resulting P plotted versus M0. Despite some expected
scatter due to different particle types and fluctuations
between experiments, we observe that between M0 ¼ 0.2
and M0 ¼ 0.4, P rises from near 0 to almost 1. Thus, the
collective stiffening (α ≈ 2.2) observed with increasing
M0, which causes the departure from Eq. (1), is also
correlated with significant homogenization of the strong
force network.
We note two possible grain-scale sources for these

effects. First, spatially dense force networks tend to have
more force contacts per particle. In this case, a pair-wise
Hertz-like force law may fail, since deformation at one
contact can affect the response at other contacts. Second,
lateral expansion of grains forms new contacts, leading to a
collective strengthening of the system. These effects have
been demonstrated recently in a 3D system of soft particles
[28]. In the Supplemental Material [25], we show that
this occurs for our softest particles. Photoelastic images in
the Supplemental Material [25] from compression tests
show only chainlike forces for hard and medium particles
and spatially dense forces in the softest particles at large
compression. These images demonstrate particles
deforming and forming additional contacts in the lateral
direction. Other studies have observed this effect when
physical grains with a nonzero positive Poisson ratio are
compressed sufficiently [16,23]. When compression forces
propagate along relatively sparse force networks, the
compressed particles can easily expand laterally, with no
resistance from neighboring non-force-chain particles.
However, larger stress (or higher M0) leads to a denser
strong force network and a significant number of new
contacts in the lateral direction, which stiffen the material.
This situation may occur in many common nonbrittle
materials, including some soils, food grains, plastics,
rubber, etc., although brittle grains may break for compa-
rable strains.
We conclude by returning to the questions raised in the

introductory section. We find that Eq. (1) holds for impacts
into frictional particles over a substantial range of impact
speeds. The spatial structure of the networks along which
forces are carried appears to differ significantly from what
was reported for frictionless simulations in [17]. For low
M0, we observe strong force networks that are spatially
sparse and inhomogeneous. The networks become more
spatially dense and homogeneous (i.e., P grows) and the
data for scaled vf depart from Eq. (1) asM0 increases. This
departure is associated with a collective stiffening also
observed in static compression tests, which can quantita-
tively account for departure from Eq. (1). These effects
arise from the lateral expansion of physical grains, an effect
that is absent in most DEM/MD simulations to date, for
which there is no interdependence of multiple contact
forces acting on a given grain.
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FIG. 3 (color online). (a) Plot of ratio of measured vf to d=tc
versus M0. We find vf ≈ 5.3ðd=tcÞ to hold for small M0, but for
large M0, vf is faster than this relation. (b) Participation ratio, P,
versusM0, which approximates the spatial density of propagating
forces (see text for details).
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