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We report a laboratory investigation of weak turbulence of water surface waves in the gravity-capillary
crossover. By using time-space-resolved profilometry and a bicoherence analysis, we observe that the
nonlinear processes involve three-wave resonant interactions. By studying the solutions of the resonance
conditions, we show that the nonlinear interaction is dominantly one dimensional and involves collinear
wave vectors. Furthermore, taking into account the spectral widening due to weak nonlinearity explains
why nonlocal interactions are possible between a gravity wave and high-frequency capillary ones. We
observe also that nonlinear three-wave coupling is possible among gravity waves, and we raise the question
of the relevance of this mechanism for oceanic waves.
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A large ensemble of nonlinear waves can exchange
energy and develop a turbulent state. The statistical proper-
ties of such wave turbulence have been described theo-
retically for weak nonlinearity in the framework of the
weak turbulence theory (WTT). In this theory, only
resonant waves are able to exchange significant amounts
of energy over long times due to the weak nonlinear
coupling. The predicted phenomenology of the stationary
statistical states resembles that of fluid turbulence: energy is
injected at large scales and cascades down scale to wave-
lengths at which dissipation takes over and absorbs energy
into heat. A major difference with fluid turbulence is that
analytical predictions for the stationary spectra (and other
statistical quantities) can be derived for weak wave turbu-
lence [1–3]. Analyses of sea surface waves are among the
pioneering physical systems studies that led to the develop-
ment of the theory [4]. The theory was applied to a vast
number of waves (in plasmas [1], solar winds [5], nonlinear
optics [6], quantum superfluid vortices [7], vibrated elastic
plates [8], etc.).
For isotropic systems, the predicted energy spectrum

EðkÞ has the following expression

EðkÞ ¼ CP1=ðN−1Þ=kα; ð1Þ
where k ¼ jkj is the wave number, P is the energy flux, C
is a dimensional constant that can be calculated, and α is the
spectral exponent. N is the number of waves taking part in
the resonances. Usually, N − 1 corresponds to the order of
the nonlinear coupling term of the wave equation (N ¼ 3
for quadratic nonlinearities, N ¼ 4 for cubic ones,…). The
waves have then to satisfy the resonance conditions such as
k1 ¼ k2 þ k3 and ω1 ¼ ω2 þ ω3 (for three-wave interac-
tion). In some cases, these resonances conditions do not
have solutions. This is the case in particular for gravity
waves at the surface of water. The dispersion relation (for
infinite depth) is ω ¼ ffiffiffiffiffi

gk
p

, and its negative curvature does

not allow for solutions of the resonance conditions for three
waves. Thus, the resonances are expected to involve
four waves. At small wavelengths, water waves are
capillary waves for which the dispersion relation is ω ¼
ðγ=ρÞ1=2k3=2 and whose curvature allows for three-wave
resonances (γ is the surface tension and ρ is the density).
The predicted spectra for water waves are thus expected
to be EðkÞ ∝ P1=2k−7=4 for capillary waves and EðkÞ ∝
P1=3k−5=2 [2] for gravity waves. Laboratory experiments
largely fail to reproduce these predictions, in particular for
the gravity waves. In large or small wave tanks, the spectral
exponent of the gravity waves is seen to strongly vary with
the forcing intensity and to be close to the WTT predictions
at the highest forcing magnitude, at odds with the weak
nonlinearity hypothesis [9,10]. Furthermore, the measure-
ment of the exponent of the injected power is also different
from that predicted by WTT [10]. Recent work on water
waves and vibrated plates suggests that wideband dissipa-
tion is most likely responsible for the latter observation
[11–13]. Another experiment also suggests that several
regimes of wave turbulence of water waves may exist
depending on the intensity and frequency of the forcing
[14]. Nevertheless, the question of the order of the
interaction remains of prime importance to test the theory.
In this Letter, we report a high-order statistical analysis that
directly probes the nonlinear interaction among waves. We
implement a time-resolved, two-dimensional (2D) profil-
ometry of the water surface deformation. The accessible
wavelengths correspond to capillary waves and to the
gravity-capillary crossover at which the order of interaction
supposedly switches from three wave at small wavelength
to four wave at large wavelengths. We investigate the
resonant interaction and the impact of the wave amplitude
on the energy transfers.
The experimental setup consist of a rectangular plastic

vessel of 57 × 37 cm2 filled with 10 l of water to a rest
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height h0 ¼ 5 cm (Fig. 1). Two curved walls are used to
improve the isotropy by divergent waves reflection.
Surfaces waves are excited by horizontally vibrating the
vessel at frequencies in the range ½0.5; 1.5� Hz. Waves are
measured using the Fourier transform profilometry tech-
nique, which enables a full space-time characterization of
the waves [15]. We used filtered softened water and
thoroughly washed the tank. Similarly to Przadka et al.
[16], we use anatase titanium dioxide particles (Kronos
1001) that do not alter the measured water surface tension
and do not induce additional dissipation at the surface.
Because of the use of this pigment, it is possible to project a
pattern at the very surface of the water. When the water
surface is deformed, the pattern seen by a camera is
changed. The alteration of the pattern can then be inverted
to recover the deformation of the surface [17]. Here, the
deformation of the pattern is recorded by a high-speed
camera over a 20 × 20 cm2 surface at the center of the tank,
with 1024 × 1024 pixels resolution at 250 frames=s. Data
sets are made of 15 movies with a duration is 87 s for
each movie.
We show in Fig. 2 the space-time power spectrum

Evðk;ωÞ of the velocity field v ¼ ∂η=∂t where ηðx; y; tÞ
is the altitude of the water surface. We first compute

Evðk;ωÞ ¼ hjvðk;ωÞj2i; ð2Þ
where vðk;ωÞ is the space and time Fourier transform of
the velocity. The time Fourier transform is computed by
selecting a 16 s time window of the signal. The average
h� � �i is a time average over the time windows. Evðk;ωÞ is
then summed over directions of the 2D wave vector k to
provide a 2D picture of Evðk;ωÞ (Fig. 2). Energy is seen to
be concentrated around the linear dispersion relation of
gravity-capillary waves

ω ¼
�
gkþ γ

ρ
k3
�

1=2
: ð3Þ

The isotropy of Evðk;ωÞ is shown in the inset of Fig. 2
at a given frequency of 10 Hz. Energy is convincingly

distributed over all directions. The energy concentration
around the dispersion relation is due to nonlinear spectral
widening predicted by the WTT framework. Note that no
secondary branches of the dispersion relation are seen,
contrary to what was reported in Ref. [18]. Our regime
corresponds to the second regime of turbulence reported in
Ref. [14] at the weakest magnitude of the waves. The wave
steepness of our data is indeed small,

σ ¼
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

S

Z
S
∥∇hðx; y; tÞ∥2dxdy

s +
¼ 0.025;

thus, our wave field is weakly nonlinear.
As discussed in the introduction, the order of nonlinear

wave interaction depends on the order of the nonlinearity
and the possibility or not of having solutions for the
resonance equations. McGoldrick and then Simmons
[19,20] investigated the three-waves resonant solutions in
a gravity-capillary regime. A three-dimensional representa-
tion of the solutions for a given wave vector k2 is shown in
Fig. 3. As the curvature of the dispersion relation changes
sign, solutions of the three-wave resonance conditions exist
even if the wave vector k2 lies in the gravity range. Such a
solution exist only if the norm of the vector k3 exceeds a
minimum value as can be seen from the red line in Fig. 3.
This minimum value of k3 is reached when the three wave
vectors k1, k2, and k3 are collinear (one-dimensional, “1D,”

FIG. 1. Sketch of the experiment (top view). The vessel is
translating horizontally with a constant amplitude frequency
modulated oscillation, of which the frequency is chosen in the
interval ½0.5; 1.5� Hz. Two curved walls are placed on the left and
right sides to improve the isotropy by diverging waves reflection. ω / 2π (Hz)
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FIG. 2 (color online). Space-time Fourier spectrum of the
velocity field of the waves Evðk;ωÞ (see text for definition).
The color scale is log10Evðk;ωÞ. The solid black line is the
theoretical deep-water linear dispersion relation for pure water
ω2 ¼ gkþ ðγ=ρÞk3 with γ ¼ 72 mN=m. Energy is localized on
the dispersion relation and can be observed for frequencies up to
60 Hz. The crossover between gravity and capillary waves occurs
at kc ¼

ffiffiffiffiffiffiffiffiffiffi
ρg=γ

p ¼ 120π, corresponding to a wavelength of
1.7 cm and a frequency equal to 13 Hz. Inset: Eðk;ωÞ at
ω=2π ¼ 10 Hz. The energy distribution is fairly isotropic. The
black circle corresponds to the linear dispersion relation. Color:
log10Eðk;ωÞ between −8 and −4.
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situation). This can be translated in the frequency space: at a
given frequency ω2, there is a minimum value of ω3 that
allows for a resonant wave at ω1. In the following, we note
with ωmin

3 ðω2Þ this minimum value [Fig. 3(b)] and ωmin
1 ðω2Þ

the corresponding value of ω1 [Fig. 3(c)]. These values of
the resonant frequencies correspond to 1D wave interaction.
By scanning values of ω2, one observes that there is a overall
minimum value for resonant ωmin

1 corresponding to the
degenerate case of aWilton wave:ω1 ¼ 2ω2 ¼ 2ω3 ¼ 2π ×
19.6 Hz [Fig. 3(c)] [21]. Measurements performed by
Henderson and Hammack [22] confirm the existence of
these three-wave resonant couplings.
To investigate the three-wave coupling in our experi-

ment, we study third-order correlations of the velocity field.

From vðx; y; tÞ, we compute the Fourier transform in time
over 4 s time windows to obtain vðx; y;ωÞ. Correlations are
then computed as

Cðω1;ω2;ω3Þ ¼
jhhv⋆ðx; y;ω1Þvðx; y;ω2Þvðx; y;ω3Þiij

½Evðω1ÞEvðω2ÞEvðω3Þ�1=2
ð4Þ

where the star stands for complex conjugation and the
average hh� � �ii stands for an average over the time
windows and a space average over (x; y) positions on
the image. EvðωÞ ¼ hhjvðx; y;ωÞj2ii is the frequency
spectrum. With such a normalization, the coherence lies
between 0 (no correlation) and 1 (perfect correlation). For a
stationary (in time) signal, such a third-order correlation is
expected to be nonzero only along the resonance line
ω1 ¼ ω2 þ ω3. In order to check whether three-wave
correlation is truly observed, we show the coherence
map at a given frequency (ω2=2π ¼ 10 Hz) in Fig. 4. A
line of correlation emerges from the statistical convergence
noise that confirms that three-wave resonant processes are
indeed present in the signal. Such a line can be observed at
all values of ω2. Note that the correlation level is not
homogeneous along the line, showing preferential inter-
action among the waves. In order to look deeper in the
nonlinear dynamics, we focus in the following on the
bicoherence, defined as0 10 20 30 40 50
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FIG. 3 (color online). Solutions for the three wave resonances
of gravity-capillary waves. (a) The red surface corresponds to the
dispersion relation (3). First, a given value of k2 is chosen.
The blue surface corresponds then to the sum ωðk2Þ þ ωðk3Þ.
The resonant wave at k1 must verify the resonance conditions
k1 ¼ k2 þ k3 and ω1 ¼ ω2 þ ω3 and, thus, lie on the intersec-
tion of the red and blue surfaces (thick black line). The red line at
the bottom of the axes corresponds to the projection of the black
line. (b) Evolution of ωmin

3 ðω2Þ that is the minimum value of ω3

for which there is a possible solution for a given value of ω2.
(c) Corresponding value of ωmin
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FIG. 4 (color online). Representation of three-wave coherence
jCðω1;ω2;ω3Þj (see text for definitions). The specular light blue
pattern on the background corresponds to statistical convergence
noise so that the statistical convergence is about 10−2.5. Here,
ω=2π is chosen equal to 10 Hz. Thus the observed line of
correlation lies above the convergence level by more than 1 order
of magnitude at the maximum of correlation. This is the sign of
the presence of significant three-wave coupling in the signal. The
line lies on the resonance curve ω1 ¼ ω2 þ ω3 as expected from
such statistical estimator. Color is log10jCj.
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Bðω2;ω3Þ ¼ Cðω2 þ ω3;ω2;ω3Þ: ð5Þ
It corresponds to the extraction of the coherence observed
on the resonant line of Fig. 4, which has been checked to be
significant and above the convergence noise level.
Figure 5 displays the bicoherence map corresponding to

the extraction of the coherence for all values of ω2. A
noticeable organization of the coherence is clearly visible.
First, a wide curved line of high coherence (about 10−1) is
observed. The crest of coherence lies on the curve ωmin

3

(solid black line) corresponding to the unidirectional
interaction of the waves as explained above. This obser-
vation suggests that the core of the nonlinear interaction in
our experiment is quasi-1D. The isotropy of the space-time
spectrum of Fig. 1 may be somewhat artificial and mostly
due to chaotic mixing of the waves due to the boundary
conditions (reflection of curved walls) rather than nonlinear
directional spreading.
Another region of high coherence is seen also for weak

values of ω3 and large values of ω2 (bottom-right part of
Fig. 5 along the axis). This region is made of two horizontal
lines of high correlation values (a symmetric region exists
next to the vertical axis). The discrete character of these two
lines suggests that it corresponds to interactions of capillary
waves with the first modes of our finite domain. Note that
the eigenfrequencies of these modes lie in the gravity
domain (0.9 and 1.7 Hz). The existence of these regions
seems paradoxical, as no exact resonant interaction of
waves is possible below the curve ωmin

3 .
To explain this paradox, let us note that the coherence

line along ωmin
3 has a finite (nonzero) width. This width

may be associated to the similar width of the energy
concentration along the dispersion relation of Fig. 2.

This width is due to nonlinear effects: indeed, the coher-
ence of the linear waves is altered by the nonlinear energy
exchanges with the other waves [2,23]. The width of the
dispersion relation is thus a measure of the degree of
nonlinearity of the system. Let us assume that δk is the
width in wave number of the dispersion relation (δk is taken
constant for simplicity). It can be interpreted as a nonlinear
uncertainty on the determination of the wave number.
Thus, the resonance condition translates into an inequality
jk1 − k2 − k3j < δk rather than an equality to zero. For
simplicity, let us assume that as suggested by the data in
Fig. 5 the nonlinear coupling occurs solely through a 1D
mechanism. We look for the solutions k1 ¼ k2 þ k3 � δk
and ω1 ¼ ω2 þ ω3. The two corresponding solutions are
shown as the dashed lines in Fig. 5 for δk=2π ¼ 5 m−1.
This value of δk is reasonable in view of the width of the
dispersion relation in Fig. 2. The two dashed lines
spectacularly encircle the blue regions of very low coher-
ence and highlight the regions of high coherence. The new
region of high coherence delimited by the dashed lines
incorporates all previously discussed regions. This obser-
vation removes the apparent paradox. When one takes into
account the nonlinear spectral widening, the possible
interactions are much more numerous, including frequen-
cies well below the ωmin

3 curve. In particular, it opens a
region of strongly nonlocal interaction of a very-low-
frequency gravity mode and two much higher capillary
waves. For example, the mode at 0.9 Hz can interact with
the whole interval of frequencies and, thus, initiate the
energy cascade.
Furthermore, as can be seen in the bottom left corner of

the picture, very-low-frequency modes can also interact
among each other. As discussed in the introduction, the
nonlinear interaction of gravity modes is usually assumed
to involve four waves, but incorporating a small nonlinear
spectral widening may allow for three-wave quasireso-
nances that may actually be more efficient to transfer
energy. This possible interaction remains to be quantified
precisely, as in our simplified calculation the widening
is taken constant whereas it depends usually on the
frequency [23]. If confirmed at larger scale, this mecha-
nism could also be responsible for the discrepancy of the
observed spectral exponents in the gravity range as
compared to the WTT predictions that assume four-wave
interactions.
In conclusion, we have shown that weak turbulence of

water waves near the gravity-capillary crossover relies on a
quasi-1D three-wave interaction. The theoretical reason for
the selection of this 1D mechanism while 2D resonances
are a priori allowed remains to be investigated. Taking into
account the nonlinear spectral widening into the study of
the resonance conditions appears to be of prime impor-
tance, as it significantly changes the range of possible
interactions. In particular, it allows for strongly nonlocal
interactions between gravity and capillary waves and for
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FIG. 5 (color online). Bicoherence Bðω2;ω3Þ ¼ Cðω2þ
ω3;ω2;ω3Þ. The solid black line corresponds to the minimum
value ωmin

3 ðω2Þ allowing exact resonances (see text). The dashed
lines correspond to the transformation of the solid line when
allowing for a δk=2π ¼ 5 m−1 uncertainty on the resonance
condition (see text).
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three-wave interaction among gravity waves, previously
assumed to be impossible.
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