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We show that the inductive coupling between the quantum mechanical motion of a superconducting
microcantilever and a flux-dependent microwave quantum circuit can attain the strong single-photon
nanomechanical coupling regime with feasible experimental parameters. We propose to use a super-
conducting strip, which is in the Meissner state, at the tip of a cantilever. A pickup coil collects the flux
generated by the sheet currents induced by an external quadrupole magnetic field centered at the strip
location. The position-dependent magnetic response of the superconducting strip, enhanced by both
diamagnetism and demagnetizing effects, leads to a strong magnetomechanical coupling to quantum
circuits.
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In quantum nanomechanics, the strength of the radiation-
pressure interaction between a single electromagnetic mode
of frequency ω and a micromechanical mode of frequency
Ω and effective mass M is denoted by g0, the so-called
single-photon coupling rate [1]. This is the cavity fre-
quency shift due to a zero-point motion displacement of
the mechanical oscillator, given by zzp ¼ ½ℏ=ð2MΩÞ�1=2,
namely, g0 ¼ zzp∂ω=∂zjz¼0. The single-photon coupling,
being nonlinear, could be exploited to observe non-
Gaussian physics in micromechanical oscillators [2–7], a
goal that would represent a milestone in the field [1].
However, this is today experimentally very challenging.
The mechanical mode (electromagnetic mode) suffers
decoherence with a rate Γ (κ) whose origin depends on
the particular experimental implementation. To fully
exploit the non-Gaussian character of the single-photon
nanomechanical coupling, one would like to operate in the
strong-coupling regime g0 ≳ Γ; κ as well as in the resolved
sideband regimeΩ=κ ≳ 1. The latter is required to sideband
cool the mechanical mode into the ground state [8–10].
While g0=Γ≳ 1 and Ω=κ ≳ 1 has been achieved simulta-
neously in several experiments [1], the so-called single-
photon strong coupling regime g0=κ ≳ 1 is much more
challenging. Indeed, according to [1], the highest values
of g0=κ obtained so far with solid mesoscopic objects are
∼10−3 [11,12] (with cold gases one achieves g0=κ ∼ 1

[13,14] but not in the resolved sideband regime).
In this Letter, we propose a microwave optomechanical

scenario, see Fig. 1, where we show that the strong single-
photon regime g0=κ ≳ 1 can be achieved in the resolved
sideband regime with feasible experimental parameters.
Contrary to most of the current experiments in microwave
optomechanics [1,12], where the optomechanical coupling
is implemented capacitively, here, we motivate to use an
inductive coupling to a flux-dependent quantum circuit as a

way to obtain 3 orders of magnitude stronger couplings.
Such a strong quantum magnetomechanical (MM) cou-
pling is achieved via the magnetic response of a super-
conducting (SC) strip in an inhomogenous external field
that is strengthened by the large diamagnetic and demag-
netizing effects of superconducting strips in the Meissner
state [15,16]. This contrasts to other experiments and
proposals on quantum magnetomechanics that do not
exploit this fact and thus, do no achieve such strong
couplings, see, for instance, [17–21].
The quantumMM coupling to a flux-dependent quantum

circuit can be obtained as follows. While, in principle, one
just requires a quantum circuit with a SQUID loop, here,

FIG. 1 (color online). Schematic illustration of the proposal
(not to scale). A superconducting strip of length L and width w is
deposited on the tip of the cantilever. At a distance zc above the
cantilever, a pickup coil of the same length and width wc, which is
fabricated on a wafer not shown for clarity, collects the flux
generated by the currents in the strip induced by an external
quadrupole field Ba. The B field is generated by two parallel
wires with opposite current of intensity Iw, separated by a
distance dw, and placed below the cantilever at a distance zw.
An additional perpendicular bias field creates a zero field at the
strip position.
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we use the particular example of a transmon qubit [22]
that operates as a slightly anharmonic inductance-
capacitance (LC) oscillator with creation (annihilation)
mode operators â† (â). The Hamiltonian can be written
as Ĥ ¼ ℏωðzmÞâ†âþ ℏβâ†â†â â =2, where ℏωðzmÞ ¼
½8EJðzmÞEC�1=2 − EC, EJðzmÞ ¼ 2EJ1 cos½πΦðzmÞ=Φ0�,
ℏβ ¼ −EC, Φ0 is the flux quantum, and zm is the
position of the superconducting strip along the z axis, as
described in more detailed below. Here, EC is the charging
energy of a single electron stored in the capacitance,
and EJ1 is the energy associated with an electron
tunneling across one of the two identical junctions.
The transmon regime requires EJ=EC ≫ 40. Hereafter,
we will not use the anharmonic term, which can be a
resource for many applications, and will only focus on the
flux-dependent microwave harmonic oscillator. The flux
threading the pickup coil ΦðzmÞ depends on the z dis-
placement of the mechanical oscillator from the equilib-
rium position zm ¼ 0, which is given by zm¼ zzpðb̂†þ b̂Þ.
By expanding ωðzmÞ around zm ¼ 0, one arrives at
the standard single-photon coupling nanomechanical
Hamiltonian [1] Ĥ¼ℏωâ†âþℏΩb̂†b̂−ℏg0â†âðb̂†þ b̂Þ
with ω ¼ ωð0Þ and g0¼ϕω0η, where ℏω0≡½8EJ1EC�1=2,
ϕ≡πsinðπΦð0Þ=Φ0Þ=½2cosðπΦð0Þ=Φ0Þ�1=2, and

η≡ zzp
Φ0

∂ΦðzÞ
∂z

����
z¼0

: ð1Þ

The dimensionless parameter η quantifies the MM coupling
to any quantum circuit since it is the variation of flux (in
units of Φ0) in the pickup coil due to a zero-point motion
displacement of the mechanical oscillator. The decoherence
rate of the quantum circuit can be generally expressed as
κ ¼ ω0=Q, where Q is the circuit quality factor. Therefore,
the ratio between the single-photon coupling and κ is given
by g0=κ ¼ ϕQη. The parameter ϕ can be tuned by varying
Φð0Þ. Consequently, the MM coupling can be switched on
(switched off) by operating at the linear (quadratic) regime,
e.g., Φð0Þ=Φ0 ∼ 1=4 (e.g., Φð0Þ=Φ0 ¼ 0), where ϕ ∼ 2

(ϕ ¼ 0). Note that since values of Q ∼ 106 have been mea-
sured [23,24], the strong single-photon regime g0=κ ≳ 1

could be thus achieved provided 2η≳ 10−6. In the follow-
ing, we propose and analyze a setup where such regime
could be achieved.
We consider a thin SC strip occupying the region

x ∈ ½−L=2;þL=2�, y ∈ ½−w=2;þw=2�, and z ∈ ½zm − t=2;
zm þ t=2�, with L ≫ w ≫ t, see Fig. 1. The SC strip is
assumed to harmonically oscillate along the z axis, with
equilibrium position at zm ¼ 0 and harmonic frequency Ω.
This can be achieved, for instance, by depositing the SC
strip at the tip of a nonmagnetic micromechanical cantilever
of thickness t0, width L, and mass density ρ0, see Fig. 1.
In the calculation of the single-photon radiation pressure
coupling, the effective mass of the mechanical oscillator

can be approximated by [25] M ¼ Lwðρtþ ρ0t0Þ, where ρ
is the mass density of the SC material. A rectangular
pickup coil covering the area x ∈ ½−L=2;þL=2�, y ∈
½−wc=2;þwc=2� is placed at z ¼ zc on a second wafer.
The SC strip, which is considered to be in the Meissner
state, fulfills that either the London penetration depth
λ ≪ t or, if λ≳ t, the two-dimensional screening length
Λ≡ λ2=t ≪ w [15,16]. It is also assumed that t > ξ, where
ξ is the superconducting coherence length. Under these
standard conditions, one can treat the magnetic response of
the SC strip using London theory [15,16].
The MM coupling is established by applying an external

B field to the SC strip in the Meissner state. Due to the
diamagnetic response of the SC strip, currents are induced
to have a zero total B field in the interior of the sample
[15,16]. The flux threading the pickup coil generated by the
induced strip currents depends on the strip z position of
the cantilever. Stronger couplings are obtained when an
inhomogeneous field with a gradient along z is applied. The
reason is that the induced currents depend in this case on
the position of the cantilever and therefore, η scales as 1=zc
for zc ≳ w. This contrasts with the case of a homogenous
applied field since then the position-dependent flux only
arises because the distance between the cantilever and
the pickup coil changes, thereby leading to η ∝ 1=z2c. A
convenient inhomogeneous magnetic field, with a gradient
along z, and uniform along the x axis (the long axis of the
strip), is given by the quadrupolar field Baðy; zÞ ¼
bð−yey þ zezÞ, where the gradient b is constant, and its
maximum value is limited to ensure field strengths in the
strip are below its critical field.
The induced currents in the SC strip in the presence of

the applied field Ba can be calculated as follows. Since one
needs the field generated by the induced currents at a
distance zc ≫ t, one can use the average sheet current
Kðy; zmÞ≡ R zmþt=2

zm−t=2
Jðy; zÞdz, where J is the volume

current density. The currents are assumed to be independent
on x since the applied field is homogeneous in x, L ≫ w,
and when t ≪ w the current distribution is not affected by
the y component of the external field [26]. Moreover, we
show in the Supplemental Material (SM) [27] that although
Ba is not uniform across t, the induced Kx only depends
on the thickness-averaged external vector potential under
the thin film approximation. Hence, when the strip is at
some height z ¼ zm, Kx will be well approximated to that
induced by a uniform out-of-plane field Ba ¼ bzmẑ,
namely, [15,16]

Kðy; zmÞ ¼
bzm
μ0

2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw=2Þ2 − y2

p ex; ð2Þ

where μ0 is the vacuum permeability. This current distri-
bution expels the out-of-plane B field from the interior of
the sample, depends on the position of the cantilever zm and
is zero when zm ¼ 0.
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To obtain an analytical expression for η, one needs the
vector potential generated by the strip currents. This can be
calculated by integrating across the strip width the con-
tributions from the infinitesimal narrow straight filaments
that compose it, namely, AKðy; zÞ ¼

R w=2
−w=2 dAKðy; y0; zÞ,

where, using Ampère’s law,

dAKðy; y0; zÞ ¼ −
μ0dI
2π

ln½ðy − y0Þ2 þ ðz − zmÞ2�x̂; ð3Þ

with dI ¼ Kxðy0; zmÞdy0. Using Eq. (2), one obtains that
AKðy; zÞ ¼ AKðy; zÞex is given by

AKðy; zÞ
bzm

¼ y −
y
jyjRe

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½yþ iðz − zmÞ�2 −

�
w
2

�
2

s �
: ð4Þ

In this particular longitudinal geometry, one can use the
contour lines of the vector potential to plot the magnetic
B-field lines [29] of BK ¼ ∇ ×AK , as shown in Fig. 2(a).
The magnetic flux threading the pickup coil is given by the
contour integral of the vector potential along the coil wire.

This leads to ΦðzmÞ ¼ 2LcAKðwc=2; zcÞ. Using Eq. (4) and
recalling Eq. (1), one obtains η ¼ η⋆χ, where

χ ≡ wc

w
− Re

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
wc

w
þ i

2zc
w

�
2

− 1

s �
: ð5Þ

The maximum value of η is given by η⋆ ≡ zzpbLcw=Φ0,
which corresponds to the limitwc → w and zc → 0. Given a
coil distance zc, the value of η is maximized for an optimal
w⋆
c which corresponds to the width for which the lateral

long wires of the pickup coil coincide with the lines of
Bz
K ¼ 0 [see Fig. 2(a)]. Using w⋆

c , η=η⋆ can be plotted as a
function of zc=w, see Fig. 3(a). At an experimentally
feasible distance zc ¼ w, η=η⋆ ≈ 1.2 × 10−1. At the same
distance, an homogeneous external field would lead to
η=η⋆ ≈ 1.9 × 10−2, nearly an order of magnitude less, see
SM [27] and Fig. 3(a).
The value of η⋆, and thus of g0=κ, is maximized when the

maximum gradient bmax allowing for superconductivity in
the strip is used. That is, one requires jBa þ BKj < Bc at
any point in the sample, where Bc is the first critical field
from the SC strip material. By taking into account the
demagnetizing effects [15,16], it is shown in the SM [30]
that this leads to bmax ¼ fðt=wÞ2Bc=w, where
fðxÞ ¼ ½1þ ð ffiffiffiffiffi

2x
p þ xÞð1þ xÞ�−1=2. Taking Lc ¼ L, one

arrives at

η⋆ ¼ 2Bc

Φ0

fðt=wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρt
ρtþ ρ0t0

ℏ
2ρΩ

s ffiffiffiffiffi
Lc

tw

r
; ð6Þ

that together with Eq. (5) gives an analytical expression
for η and thus, g0=κ. Hereafter, we consider niobium for the
SC strip, with Bc ≈ 140 mT and ρ ¼ 8.57 × 103 kg=m3,
the strip dimensions t¼50nm, w¼1μm, and Lc ¼ 100 μm,
the cantilever to be made of silica with ρ0 ¼
2.3 × 103 kg=m3, t0 ¼ 0.5 μm, and Ω ¼ 2π × 106 Hz.
Using zc¼w, wc¼w⋆

c≈2.2μm, and bmax≈2.4×105 T=m,
one obtains 2η ∼ 20.4 × 10−6. This is the main result of

(a) (b)

FIG. 2 (color online). B-field lines corresponding to the (a) field
created by the induced currents BK and (b) the applied field
created by two antiparallel wires (marked as white circles) and a
bias field, see text. The SC strip (pickup coil) is illustrated to scale
in both plots with a solid rectangle (solid line segment delimited
by crosses). The dashed red line in (a) marks the optimal pickup
coil width w⋆

c for each pickup coil height zc.

(a) (b) (c)

FIG. 3 (color online). (a) η=η⋆ as a function of zc=w for the case of the quadrupole field (red blue line) corresponding to Eq. (5) and for
a homogeneous field (dotted red line) corresponding to the expression given in the SM [27]. Dashed grey lines indicate the asymptotic
scaling for zc=w≳ 1. (b) ηL=η values computed with MEM [30–32] for different finite strip lengths L=w. Inset shows the values obtained
by extrapolating the results for different number of cells N in the MEM method. (c) ηΛ=η as a function of Λ=w calculated using the
expression for the sheet currents given in [33] (see also SM [27]).
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the Letter because Q ≈ 106 has been experimentally mea-
sured [23,24], and thus, using the maximum gradient bmax,
this would lead to g0=κ ≈ 20.4, well within the single-
photon strong coupling regime. Mechanical dampings of
γ ∼ 2π × 1 Hz have been measured in low frequency mass-
loaded cantilevers [34–36]. This would lead to mechanical
decoherence rates of Γ ≈ γKbT=ðℏΩÞ ∼ 2π × 6.5 kHz at
T ¼ 50 mK, and hence, to a single-photon cooperativity
C ¼ g20=ðκΓÞ ∼ 400 (using the maximum gradient bmax).
Let us now discuss two approximations that were used to

calculate η: the distributions of fields and currents were
those of (i) an infinite strip length with (ii) Λ ¼ 0.
Regarding (i), we have numerically computed η for zc ¼ w
and wc ¼ w⋆

c for finite L=w values. In Fig. 3(b), the ratio of
ηL (computed with a finite L) with η (obtained with an
infinite length) as a function of L=w is plotted. This has
been done using the magnetic energy minimization (MEM)
method [30–32]. As expected, ηL=η approaches unity as
one increases L=w, with ηL=η ∼ 0.98 already at L=w ¼ 50
(with the values discussed above, one has L=w ¼ 100).
Regarding (ii), a finite Λ can be taken into account by using
an approximated expression for the current distribution,
see [33] and SM [27]. Using this, ηΛ=η (with ηΛ being
the value of η for a finite Λ) can be plotted as a function
of Λ=w, see Fig. 3(c). For niobium, λ ¼ 39 nm and
therefore, Λ=w ¼ 3 × 10−2. This leads to ηΛ=η ≈ 0.73
at zc ¼ w and wc ¼ w⋆

c . This validates approximations
(i) and (ii).
To generate the ideal quadrupole B field given by

Ba ¼ bð−yey þ zezÞ, we propose to use two thin long
straight wires placed along the x axis, at some height
z ¼ −zw and y ¼ �dw=2, with dw ¼ 4zw, see Fig. 2(b).
The wire at y ¼ dw=2 (y ¼ −dw=2) has a positive
(negative) current Iw, namely, along ex (−ex), see Fig. 1.
An expression for the B field generated by the wires Bw
can be straightforwardly obtained, see SM [27]. To have a
zero field at the position of the strip, namely, at z ¼ 0
and y ¼ 0, one should add an out-of-plane bias field
Bb ¼ 4μ0Iw=ð5πzwÞez. The total field Bw þBb is very
similar to the quadrupole field Ba, see Fig. 2(b). In
particular, the gradient along z is given by ∂zBzjz¼0 ¼
b½1þ αð2y=zwÞ2 þOðy=zwÞ4�, with b ¼ 16μ0Iw=ð25πz2wÞ,
and α ¼ 72=100. Since jyj < w=2, one can choose w=zw to
set the maximum inhomogeneity ϵ ¼ ½∂zBzjy¼w=2;z¼0−
∂zBzjy¼0;z¼0�=b ≪ 1 to be as small as desired by using

w=zw <
ffiffiffiffiffiffiffiffi
ϵ=α

p
. Restricting the maximum current intensity

to the experimentally feasible value of Iw ¼ 1A, one has
that for zw ¼ 5.4 μm the gradient is b ≈ 4.1 × 104 T=m ≈
0.17bmax and therefore, g0=κ ≈ 3.5 and C ∼ 12, still well
within the single-photon coupling regime. We have numeri-
cally validated that the inhomogeneity in the gradient field
leads to negligible corrections. With this configuration, the
total B field at the wire of the pickup coil at zc ¼ 1 μm and
y ¼ w⋆

c=2 ¼ 1.1 μm is ∼62 mT.

The intensity in the wires and the strength of the
bias field might fluctuate as IwðtÞ ¼ Iw þ δIwðtÞ and
BbðtÞ ¼ ½Bb þ δBbðtÞ�ez. The fluctuations of the intensity
(bias field) are characterized by a power spectrum
SIðBÞðωÞ, where SfðωÞ≡ 2

R∞
0 hδfðtÞδfð0Þi cosðωtÞdt.

Consequently, the flux threading the pickup coil will also
fluctuate as ΦðtÞ ¼ Φþ δΦðtÞ. It is shown in the SM [27]
that SΦðωÞ=Φ2

0 ¼ a2I SIðωÞ=I2w þ a2bSBðωÞ=B2
b, where the

noise amplification dimensionless parameters are aI ¼
6.4 × 103 and aB ¼ 1.4 × 104 (their exact expression is
given in the SM [27]). To reduce the flux noise, one should
thus use persistent currents and gradiometric configura-
tions. The fluctuations on the external field might also lead
to decoherence in the mechanical oscillator. As shown in
the SM [27], the magnetic Lorentz force F ¼ R

V JðrÞ ×
BaðrÞdr for the external quadrupole trap leads to
F ¼ −MΩ2

mzmez=2, where Ωm ¼ bw½Lπ=ð4Mμ0Þ�1=2 ¼
2π × 59 kHz < Ω [37]. Since the gradient fluctuates due
to the wire intensity fluctuations, so does Ωm. As shown in
[38] and in the SM [27], this leads to Fock state transitions
from level n to n� 2 with a rate given by R0→2 ¼
πΩ2SIð2ΩÞ=ð4I2wÞ ∼ 2π × 0.5 kHz for ½SIð2ΩÞ�1=2=ðIwÞ ¼
10−5=Hz1=2. This is 2 orders of magnitude smaller than g0
and therefore should not compromise the strong-coupling
regime.
In conclusion, we have shown that a very strong

inductive coupling can be achieved between a SC strip
in the Meissner state and a flux-dependent quantum circuit.
This might allow us to attain the so-far experimentally
challenging single-photon coupling regime in quantum
nanomechanics. Such a strong coupling could also be used
to exploit a linearized nanomechanical coupling to a
superconducting qubit. This proposal might be employed
as an experimental test bed for quantummagnetomechanics
with levitated superconducting microspheres [39]. An
interesting further direction for research is the possibility
of exploiting type-II SC strips with controlled SC vortices
to achieve even larger couplings. In this respect, this
experimental scenario might offer an alternative tool to
probe the rich physics of type-II superconductivity using
the high sensitivity of microcantilvers near the quantum
regime.
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