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Using a matter wave lens and a long time of flight, we cool an ensemble of 87Rb atoms in two
dimensions to an effective temperature of less than 50þ50

−30 pK. A short pulse of red-detuned light generates
an optical dipole force that collimates the ensemble. We also report a three-dimensional magnetic lens that
substantially reduces the chemical potential of evaporatively cooled ensembles with a high atom number.
By observing such low temperatures, we set limits on proposed modifications to quantum mechanics in the
macroscopic regime. These cooling techniques yield bright, collimated sources for precision atom
interferometry.
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The observation of low-temperature phenomena has
historically enabled new discoveries [1–3]. Accordingly,
significant experimental effort has been dedicated to reach-
ing increasingly cold temperatures. In this work, we report
the demonstration of a cooling protocol to prepare ensembles
of 87Rb atoms with effective temperatures of tens of pK,
which is, to our knowledge, the lowest kinetic temperature
ever measured. We present a new approach to atomic
thermometry that allows us to resolve such low temperatures.
Atomic thermometry with kinetic temperatures in the pK

range tests quantum mechanics at macroscopic scales [4,5].
Our results place bounds on proposed modifications to
quantum mechanics that predict the breakdown of quantum
superpositions in the macroscopic regime [4].
Additionally, the ability to reach lower temperatures has

driven numerous advances in precision measurement [6–8],
quantum information [9], and quantum simulation [10].
Our realization of a cooling protocol to achieve effective
temperatures of tens of pK meets a critical need for a new
generation of atomic sensors with dramatically increased
sensitivity [11]. These sensors are expected to have a broad
scientific reach, with applications including gravitational
wave detection [11,12], tests of general relativity [13–15],
and precision geodesy [11].
Evaporative cooling offers one route to low kinetic

temperatures [16]. An alternative cooling method [17],
often called delta-kick cooling, is to freely expand an atom
cloud and then reduce its velocity spread with a collimating
lens [18–25]. Compared to evaporation, lensing typically
requires less time and avoids intrinsic atom loss, but does
not increase phase space density. The lens is implemented
by a transient harmonic potential, realized magnetically
[20,26,27], electrostatically [28], or optically [18]. In
previous work, lensing has yielded effective temperatures
as low as ∼1 nK [15,29].
In this work, we use a sequence of lenses to continuously

manipulate the rms velocity of ensembles of 87Rb atoms

through a minimum value of Δv < 70 μm=s, correspond-
ing to effective temperature T ¼ mΔv2=kB < 50 pK for
atomic mass m [30]. The dipole lensing potential [18,30]
is generated from the transverse intensity profile of a
vertically propagating Gaussian beam, providing cooling
in two dimensions.
This cooling performance is facilitated by several

advances. We use a long expansion time > 1 s before
the application of the dipole lens, which greatly improves
its cooling capability. Additionally, we realize a cooling
protocol that minimizes the influence of imperfections of
the lensing potential on the ensemble temperature. For
instance, we implement a dual-stage sequence in which a
magnetic lens provides initial cooling, reducing the heating
from aberrations in the second-stage dipole lens.
The potential cooling performance of the dipole lens

depends on the available expansion time. Consider an
initial atom ensemble (condensate or thermal state) with
rms size Δxo and velocity spread Δvo, allowed to expand
for an object time to before application of the lens potential.
After the lens is applied, the rms velocity is Δvl and the
temperature ratio is η≡ ðΔvl=ΔvoÞ2. For an ideal
harmonic potential that has been tuned to minimize Δvl
(the collimation condition), η is bounded by ηc ¼
ðΔxo=ΔxlÞ2 ≡ γ2, where Δxl is the rms size of the
ensemble when the lens is applied and γ is the size ratio
[18]. Correlations between position and velocity in the
initial ensemble (e.g., arising from mean field interactions
during expansion) can lead to temperatures that are lower
than this bound [31]. To achieve low temperatures, it is
beneficial to have a long expansion time so that
Δxl ≈ Δvoto ≫ Δxo.
An ideal harmonic lens (frequency ω) exerts a force

FH ¼ −mω2x, where x is the transverse position. For the
dipole-potential lens, the lens duration δt is short (delta-
kick limit, ωδt ≪ 1), so we may approximate its effect
as an impulse that changes the atom’s velocity by
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δvðxÞ ¼ −ω2δtx. The lens focal time is defined by 1=f≡
ω2δt so that a point source of atoms expanding for time f
would be perfectly collimated.
In order to measure these very low temperatures, we use

a new method of atomic thermometry. At pK temperatures,
the time necessary for the ensemble size to noticeably
increase can be very long (> 10 s), making time-of-flight
expansion an ineffective probe of temperature. To circum-
vent this, we extend the duration of the dipole-potential lens
interaction beyond the collimation condition to refocus the
ensemble. As in optics, the minimum achievable image size
after refocusing is a measure of the degree of collimation.
Thus, we can infer the collimated temperature of the atom
ensemble from the refocused cloud size. An analogous
method has been used to measure the temperature of
electron beams [32].
To formalize this relationship, we solve the quantum

Liouville equation for the evolution of an arbitrary initial
state during the lensing sequence. In the delta-kick
limit, this reduces to solving the classical Liouville equa-
tion [33–35]. To account for aberration in the lens, we
assume a general lens force FðxÞ. We find that the
minimum refocused size ðΔxiÞmin sets a bound on the
minimum velocity spread Δvl achievable at collimation.
By this metric, the minimum velocity variance for the lens
(including aberrations) can be inferred by

ðΔvlÞ2bound ≡ ðΔxiÞ2min

t2i
¼ Δv2l þ δA≳ Δv2l; ð1Þ

where ti is the time between the lens and detection
(“image time”), and δA arises from lens aberrations present
during refocusing. For a wide class of aberrations (includ-
ing those encountered in this work), δA is positive, so
ðΔvlÞ2bound provides an upper bound on the collimated
temperature [36].
The cooling performance demonstrated here depends

critically on an optics configuration that reduces spatial
intensity perturbations on the dipole lensing beam.
Perturbations with spatial frequency κ produce forces
∝ κ, so high spatial frequency perturbations (κσ > 1 for
radial waist σ) are particularly detrimental [33]. For
example, for our beam waist σ ¼ 3.4 mm, a 1% perturba-
tion with κ ∼ ð100 μmÞ−1 can result in a spurious force
comparable in magnitude to the lensing force, substantially
heating the cloud. To avoid this, the beam propagates for
16 m or more from the collimation lens (retroreflected after
10.6 m) before interacting with the atoms [Fig. 1(b)],
allowing high spatial frequencies to diffract from the beam
(Fig. 2). With δt ¼ 30 ms and to ¼ 1.1 s, the lens sub-
stantially refocuses the atoms at a time ti ¼ 1.8 s later
[Fig. 1(d)].
The atom source is a cloud of 105 87Rb atoms with initial

rms size Δxo ¼ 56 μm [37] and an effective temperature
of 1.6� 0.1 nK [Fig. 1(c)]. To prepare this ultracold

source, we evaporate in a time-orbiting potential (TOP)
trap [Fig. 1(a)]. The atoms are further cooled with a
magnetic lens (details follow) and prepared in a magneti-
cally insensitive state. We then launch them upwards into a
10 m vacuum tube with a chirped optical lattice [7,38].
After 2.8 s [39], the atoms fall back down, and we image
them with a vertical fluorescence beam onto two CCD
cameras (the y-axis camera images the x–z plane, and the
x-axis camera images the y–z plane).
To evaluate the performance of the optical lens, we vary

the lens duration and measure the width of the lensed cloud.
As the lens acts only transversely, we bin the corresponding
images in the vertical dimension and analyze in one
dimension. Extracting cloud widths requires accounting
for the point spread function (PSF) of the imaging system.
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(e) Atom Source Dipole Lens Refocused Cloud

Object Image

FIG. 1 (color online). (a) Schematic of the apparatus (including
vertically oriented quadrupole trap, horizontal TOP coil pairs,
and blue-detuned launching lattice). (b) A 3 W laser, 1=e2 radial
waist σ ¼ 3.4 mm, 1.0 THz red detuned from the 87Rb D2 line,
acts on the atom cloud as a dipole lens (the ∼1 mrad beam angle
is exaggerated for clarity). (c) Fluorescence image of a 1.6 nK
cloud after 2.8 s of free fall. (d) The distribution in (c) refocused
using the dipole lens. There is no observed axial heating.
(e) Optical analogy showing the object, lens, and image, with
object distance to and image distance ti.

FIG. 2 (color online). Comparison of the dipole lens beam
intensity profile after numerical paraxial wave propagation of the
measured profile by (a) 0.25 m and (b) 16.25 m. The residuals of
fitting a 2D Gaussian are shown above each beam profile. The
beam is initially spatially filtered by propagation through an
optical fiber.
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We fit all imaged clouds to a Gaussian profile convolved
with a smooth representation of the PSF [33].
To characterize the PSF, we fit a cloud with a known,

small size; this fixes the PSF parameters for subsequent
analysis. We use a cloud imaged after a short drift time
(100 ms, the time needed to reach the fluorescence imaging
region) as the small source [Fig. 3(b)]. To directly measure
this cloud’s size, we image it with a low-aberration imaging
system [40]. The measured width of 90� 10 μm is
consistent with an extrapolation from the known cloud
parameters at the end of the TOP sequence.
Figure 3(a) shows the fitted transverse cloud size

Δxi versus lens duration δt for the two camera axes,
demonstrating the continuous variation of the atom cloud
through collimation and refocus. For this data, the lens is
applied ti ¼ 1.8 s before detection. We fit the data with the
predicted cloud size [33]

Δx2i ¼ ðΔxiÞ2min þ
1

m2
ΔF2t2i ðδt − δtminÞ2; ð2Þ

whereΔF2 is a fitting parameter characterizing the variance
of the lensing force (including any aberrations), and δtmin is
the lens duration to refocus the cloud. Even for the smallest
refocused cloud size, the chemical potential is negligibly
small (∼0.2 pK), so chemical potential does not limit our
ability to refocus. In fact, since the cloud expands vertically
during the drift time, chemical potential would not prevent
the cloud from being refocused to smaller than its initial
transverse size.
The point at δt ¼ 35 ms is nearest to the fitted refocusing

time and sets the best bound on the achievable collimation
temperature T. From Eq. (1), we find that ðΔvlÞbound ≡
ðΔxiÞmin=ti ¼ 65� 20 μm=s for the x axis and 70�
25 μm=s for the y axis. These bound the effective

temperature at collimation to below Tbound ≡mðΔvlÞ2bound=
kB ¼ 40þ40

−20 pK and 50þ50
−30 pK for the x and y axes,

respectively. This Tbound estimate includes extra heating
δA that arises between collimation time δtc and refocus
δtmin. Since heating from aberrations scales as δt2, we can
estimate T by multiplying the aberration contribution
½ðΔvlÞ2bound − γ2Δv2o� by ðδtc=δtminÞ2 ≈ ð0.6Þ2, yielding
effective temperatures of 30þ10

−10 pK and 35þ15
−10 pK for

the x and y axes, respectively [33]. The temperature
uncertainties result primarily from the standard deviation
of the measured cloud sizes, likely caused by shot-to-shot
fluctuations in the strength of the lens (e.g., due to
fluctuations in optical power or alignment). Uncertainties
in the measured PSF do not contribute significantly.
These kinetic temperature measurements are a sensitive

probe of quantum mechanics at the macroscale. For a wide
class of proposed modifications to quantum mechanics, the
mechanism that leads to decoherence of macroscopic
quantum superpositions also causes a free gas to undergo
a small amount of spontaneous heating [4,5]. For example,
in the theory discussed in [4], the heating results from
spontaneous momentum kicks that also lead to spontaneous
wave function localization. These theories can therefore be
bounded using precise heating rate measurements of
ensembles of ultracold atoms. In our experiment, sponta-
neous heating would lead to diffusion of the atom cloud
during the long drift time, limiting our ability to refocus
the cloud. The measured refocused cloud size ðΔxiÞmin
constrains the heating rate for 87Rb to 20� 30 pK=s [33].
Our ability to transversely cool an atom cloud to low

effective temperatures and to refocus the cloud after long
drift times has many applications [7,15], including terres-
trial atom interferometers with interrogation times previ-
ously thought to require microgravity. Refocusing the atom
cloud to its original size allows us to relaunch the ensemble,
extending the effective free-fall time to 5.1 s. One or more
of these relaunches could be integrated into an atom
interferometer, possibly leading to > 10 s interrogation
times on Earth. Similarly, a series of relay lenses (or an
initial collimation lens) could be integrated with light-pulse
atom interferometry to maintain a small transverse cloud
size at the beamsplitter pulses, even for very long inter-
rogation times. This would ensure a homogeneous atom
optics beam intensity across the cloud, which is critical for
large momentum transfer atom interferometry [41].
To characterize imperfections in the dipole lensing

potential and the corresponding deviations from ideal lens
behavior, we measure the refocused cloud size ðΔxiÞmin and
corresponding lens duration δtmin for various object times
to, with the total atom drift time held constant (Fig. 4). Each
point is the result of a fit of Eq. (2) to a scan of the lens
duration [like Fig. 3(a)] at one of four fractional object
times: to=ðto þ tiÞ ¼ 0.32, 0.39, 0.60, and 0.71. Also
shown is the ideal harmonic lens scaling for ðΔxiÞmin
and δtmin. Neglecting x–v correlations, the focal time
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00.5 0.51 1

Position mm

FIG. 3 (color online). (a) Filled black (open red) points denote
measured rms cloud widths on the x-axis (y-axis) camera. Each
point is the weighted mean of Gaussian fits to six experimental
shots. The dashed gray curve is a simultaneous fit to the
measurements from both cameras and reports a minimum size
of 70 μm at a lens duration of 34 ms. (b) Vertically binned images
comparing the transverse size of a 90� 10 μm cloud used to
characterize the PSF [solid red (gray) line] to a cloud refocused
2.8 s later (solid black line). The good overlap indicates high-
fidelity refocusing. Dotted black: Gaussian profile extracted from
a fit of the refocused cloud. The fit accounts for the broadening
and distorting effects of the PSF (dashed blue line).
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fmin ≡ ðω2δtminÞ−1 satisfies the thin lens formula from
geometric optics ð1=fminÞ ¼ ð1=tiÞ þ ½ð1 − γ2Þ=to� (the γ
correction results from the finite velocity spread and
vanishes in the point source limit γ ≪ 1 [42]) and the
image size ðΔxiÞmin ¼ Δxoðti=toÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − γ2
p

scales as the
magnification of the lens ðti=toÞ.
The deviation of the data in Fig. 4 from the harmonic

lens theory results primarily from large-scale aberrations
due to the Gaussian profile of the optical potential.
Modeling the lens potential as a 2D Gaussian, we calculate
ðΔxiÞmin and δtmin assuming Gaussian initial ensemble
velocity and position distributions (Fig. 4) [33]. Although
the cooling performance of the lens is partially limited by
the finite expansion time to, further extending to would not
improve cooling performance, since a larger Δxl would
increase the effect of the Gaussian aberration.
To reach the lowest temperatures, it is necessary to

minimize the impact of anharmonicities of the dipole
lensing beam. To do this, we implement a dual-stage
lensing sequence, precooling the atoms with an initial
magnetic lens. This increases the effective f=# of the dipole
lens by reducing the duration δt required for collimation. It
has the added benefit of cooling along the third axis not
addressed by the dipole lens.
The magnetic lens is performed by abruptly releasing

tightly confined atoms into a shallow harmonic TOP trap
potential [Fig. 1(a)] [43]. Subsequently turning off the
shallow trap when the ensemble has reached its maximum
size yields a colder cloud [26]. Synchronizing the radial (ρ)
and vertical (z) oscillations to optimize 3D cooling requires
a trap frequency ratio of ωz=ωρ ¼ ðnz þ 1=2Þ=ðnρ þ 1=2Þ
for integers nz and nρ (we use nz ¼ 3, nρ ¼ 2). In the

absence of gravity, the irrational ratio ωz=ωρ ¼ 2
ffiffiffi

2
p

of the
TOP trap makes perfect synchronization impossible, but
with gravity the ratio is tunable by selecting the appropriate
quadrupole gradient [44].
Figure 5 shows the evolution of a cloud while in the lens

(widths are from 2D Gaussian fits). The center of mass
oscillates vertically because the atoms start above the
minimum of the shallow trap. The initial evaporated source
used here has a release temperature of 1.4 μK (dominated
by chemical potential). The optimized lens duration of
162 ms gives a minimum effective temperature of
ðTρ; TzÞ ¼ ð50; 40Þ nK and reduced chemical potential.
The 1.6 nK source used as input to the dipole lens is
derived from an identical magnetic lens sequence, but with
a deeper initial evaporation cut.
Our combined magnetic and dipole lensing sequence has

the potential to reach even colder temperatures.
Fundamentally, the diffraction-limited collimation temper-
ature for a wave packet with size Δxl at the lens is
determined by the minimum velocity width allowed by
the uncertainty principle, in this work ∼10 fK (for the
∼400 μm clouds). Future work will seek to achieve these
limits.
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FIG. 4 (color online). (a) Minimum rms width of the cloud as a
function of the fractional object time. (b) The lens duration
required to refocus the atom cloud (δtmin) as a function of the
fractional object time. The filled black (open red) points represent
measurements on the x-axis (y-axis) camera. Solid blue line:
Expected behavior for a cloud of finite initial size (56 μm) and no
initial x–v correlations in an optical beam with a Gaussian profile.
The blue shaded regions represent the corresponding ranges
possible with correlations. The curve in (a) has no free param-
eters. For (b), the optical power is a free parameter that fits to
2.8W. Dashed gray line: Expected behavior for an ideal harmonic
potential of the same strength as at the center of the beam [33].
Dotted black line: Expected behavior for a cloud with zero initial
size subject to Gaussian aberrations.
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FIG. 5 (color online). Magnetic lensing in the TOP trap.
(a) Absorption images of the ensemble oscillating in the trap.
(b) Radial (filled blue circles) and vertical (open black circles)
rms cloud widths. Theory curves are based on numerical
solutions for trajectories of noninteracting particles in the exact
TOP potential. The solid grey curves are simultaneous fits to the
center-of-mass trajectory and the vertical width, with free
parameters for the TOP potential (radial quadrupole gradient
∇B, spinning bias field B0, and vertical position) as well as initial
first and second moments of the vertical distribution. The dashed
blue curve results from a 2D Monte Carlo simulation of the
atom distribution using the fitted parameters (including
∇B ¼ 20.9� 0.1 G=cm, B0 ¼ 6.9� 0.3 G) but no free param-
eters. The initial radial size is scaled from the fitted vertical size
by the ratio of the measured initial cloud widths.
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