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Excitation functions for the Gaussian emission source radii difference (R2
out − R2

side) obtained from two-
pion interferometry measurements in Auþ Au (

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV) and Pbþ Pb (
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV)
collisions are studied for a broad range of collision centralities. The observed nonmonotonic excitation
functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the
critical end point (CEP), in the temperature versus baryon chemical potential (T; μB) plane of the nuclear
matter phase diagram. A finite-size scaling (FSS) analysis of these data suggests a second order phase
transition with the estimates Tcep ∼ 165 MeV and μcepB ∼ 95 MeV for the location of the critical end point.
The critical exponents (ν ≈ 0.66 and γ ≈ 1.2) extracted via the same FSS analysis place this CEP in the 3D
Ising model universality class.

DOI: 10.1103/PhysRevLett.114.142301 PACS numbers: 25.75.Dw, 64.60.F-

One of the most fundamental phase transitions is that
between the hadron gas and the quark gluon plasma. This
deconfinement phase transition is usually depicted in the
plane of temperature versus baryon chemical potential
(T; μB) in the conjectured phase diagram for quantum
chromodynamics (QCD) [1–4]. The detailed character of
this QCD phase diagram is not known and current theoretical
knowledge is restricted primarily to the μB ¼ 0 axis.
Lattice QCD calculations indicate a crossover quark-

hadron transition at small μB or high collision energies
(

ffiffiffiffiffiffiffiffi
sNN

p
) [5,6]. Similar calculations for much larger μB

values have been hindered by the well-known sign problem
[7]. However, several model approaches [8–12], as well as
mathematical extensions of lattice techniques [13–16],
indicate that the transition at larger values of μB (lower
beam energies [17]) is strongly first order, suggesting the
existence of a critical end point (CEP). Pinpointing the
location of the phase boundaries and the CEP is central to
ongoing efforts to map the QCD phase diagram and to
understand the properties of strongly interacting matter
under extreme conditions.
The matter produced in ultrarelativistic heavy ion colli-

sions can serve as an important probe for the phase
boundaries and the CEP [1–4]. Indeed, a current exper-
imental strategy at the Relativistic Heavy Ion Collider
(RHIC) is centered on beam energy scans which enable a
search for nonmonotonic excitation functions over a broad
domain of the (T; μB) plane. The rationale is that the
expansion dynamics of the matter produced in these beam
energy scans is strongly influenced by the path of the
associated reaction trajectories in the (T; μB) plane.
Trajectories which are close to the CEP or which cross
the coexistence curve for the first order phase transition are
expected to be influenced by anomalies in the dynamic
properties of the medium. Such anomalies can drive abrupt

changes in the transport coefficients and relaxation rates to
give a nonmonotonic dependence of the excitation function
for the specific viscosity η=s, i.e., the ratio of the shear
viscosity η to entropy density s [18–20].
An emitting system produced in the vicinity of the CEP

would also be subject to the influence of a divergence in the
compressibility of the medium, resulting in a precipitous
drop in the sound speed and a collateral increase in the
emission duration. Such effects could also give rise to
nonmonotonic dependencies in the excitation functions for
the expansion speed [21,22], as well as for the difference
between the Gaussian emission source radii (R2

out − R2
side)

extracted from two-pion interferometry measurements
[21–25]. This radii difference is linked to the emission
duration and, consequently, to the compressibility of the
medium.
In recent work [26,27], a striking pattern of viscous

damping, compatible with the expected minimum in the
excitation function for η=s [19,20] was reported for
Auþ Au (

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV) and Pbþ Pb (
ffiffiffiffiffiffiffiffi
sNN

p ¼
2.76 TeV) collisions. An excitation function for
(R2

out − R2
side) extracted for central collisions from the same

data sets also indicated a striking nonmonotonic pattern
attributed to decay trajectories close to the CEP [27,28].
Nonetheless, it remains a crucial open question as to
whether these nonmonotonic patterns are indeed linked
to the deconfinement phase transition and the CEP.
In the limit of an infinite volume, the chiral phase

transition is characterized by singularities which reflect
the divergences in the derivatives of the thermodynamic
potential, e.g., the specific heat and various susceptibil-
ities (χ). Discontinuities in the first and second derivatives
signal the first order and second order phase transitions,
respectively. These singularities are smeared into finite

PRL 114, 142301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

10 APRIL 2015

0031-9007=15=114(14)=142301(5) 142301-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.142301
http://dx.doi.org/10.1103/PhysRevLett.114.142301
http://dx.doi.org/10.1103/PhysRevLett.114.142301
http://dx.doi.org/10.1103/PhysRevLett.114.142301


peaks with modified positions and widths, for more
restricted volumes [29,30].
The correlation length ξ diverges near the transition

temperature (Tcep) as ξ ∝ jτj−ν for an infinite volume:
τ ¼ T − Tcep. However, for a system of size Ld (d is the
dimension) this second order phase transition is expected to
show a pseudocritical point for correlation length ξ ≈ L.
This leads to a characteristic power law volume (V)
dependence of the magnitude (χmax

T ), width (δT), and peak
position (τT) of the susceptibility [29]:

χmax
T ðVÞ ∼ Lγ=ν; ð1Þ

δTðVÞ ∼ L−ð1=νÞ; ð2Þ

τTðVÞ ∼ TcepðVÞ − Tcepð∞Þ ∼ L−ð1=νÞ; ð3Þ

where ν and γ are critical exponents which characterize the
divergence of ξ and χT , respectively. The reduction of
the magnitude of χmax

T ðVÞ [χmax
μB ðVÞ], the broadening of

the transition region δTðVÞ [δμBðVÞ], and the shift of Tcep

(μcepB ) increases as the volume decreases. A similar set of
volume or finite-size dependencies is expected for the first
order phase transition, but with unit magnitudes for the
critical exponents [29]. Thus, a profitable route for locating
the CEP is to search for—and utilize the characteristic finite-
size scaling patterns associated with thee deconfinement
phase transition [29,30].
In this Letter, we use the Gaussian radii (Rout and Rside)

extracted from two-pion interferometry measurements to
first construct nonmonotonic excitation functions for
(R2

out − R2
side) as a function of collision centrality. We then

use them to perform validation tests for the characteristic
finite-size scaling patterns commonly associated with the
deconfinement phase transition and the CEP. We find clear
evidence for these scaling properties and use a finite-size

scaling (FSS) analysis to extract initial estimates for the
(T; μB) location of the CEP and the critical exponents
associated with it.
The data employed in the present analysis are taken from

interferometry measurements by the STAR Collaboration
for Auþ Au collisions spanning the range

ffiffiffiffiffiffiffiffi
sNN

p ¼
7.7–200 GeV [31], and by the ALICE Collaboration for
Pbþ Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV [32,33]. The
STAR measurements have been reported to be in very
good agreement with similar PHENIX measurements
obtained at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 39, 62.4, and 200 GeV [27,28]. The
systematic uncertainties for these measurements are also
reported to be relatively small [28,31–33].
The geometric quantities employed in our finite-size

scaling analysis were obtained from a Monte Carlo–
Glauber calculation [34–36], performed for several collision
centralities at each beam energy. In each of these calcu-
lations, a subset of the nucleons become participants (Npart)
in each collision by undergoing an initial inelastic N þ N
interaction. The transverse distribution of these participants
in the X-Y plane has rms widths σx and σy along its principal
axes. We define and compute R̄, the characteristic initial

transverse size, as 1=R̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=σ2x þ 1=σ2yÞ

q
[37]. The sys-

tematic uncertainties for R̄, obtained via variation of the
model parameters, are less than 10% [35,36].
Figure 1 shows a representative set of excitation func-

tions for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2

out − R2
sideÞ

p
, obtained for the broad selection

of centrality cuts indicated. These excitation functions,
which are linked to the compressibility of the medium, all
show the nonmonotonic dependence previously conjec-
tured to reflect reaction trajectories close to the critical
end point [27,28]. They also exhibit several characteristic
trends: (i) the magnitude of the peaks decrease with
increasing centrality (%) or decreasing transverse size,
(ii) the positions of the peaks shift to lower values offfiffiffiffiffiffiffiffi
sNN

p
with an increase in centrality, and (iii) the width of

FIG. 1 (color online).
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2

out − R2
sideÞ

p
versus

ffiffiffiffiffiffiffiffi
sNN

p
for 0%–5%, 5%–10%, 10%–20%, 30%–40%, 40%–50%, and 50%–60%

Auþ Au and Pbþ Pb collisions for mT ¼ 0.26 GeV and 0.29 GeV, respectively. The data are taken from Refs. [31–33].
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the distributions grow with centrality. These trends are
made more transparent in Fig. 2 where a direct comparison
of the excitation functions for ðR2

out − R2
sideÞ is shown. We

attribute these qualitative patterns to the finite-size scaling
effects expected for the deconfinement phase transition
[cf. Eqs. (1)–(3)] and employ the excitation functions in a
more quantitative FSS analysis, as discussed below.
Validation tests for finite-size scaling were carried out

for the full set of excitation functions as follows. First, we
exploit the phenomenology of thermal models [38–41] for
the freeze-out region and associate (T; μB) combinations
with

ffiffiffiffiffiffiffiffi
sNN

p
. Second, we associate ðR2

out − R2
sideÞ with a

susceptibility, given its connection to the isoentropic
compressibility (κS). The three HBT radii Rout, Rside, and
Rrlong, which serve to characterize the space-time dimen-
sions of the emitting source, all show a linear dependence
on R̄ [27,28].
Subsequently, a Gaussian fit was used to extract

the peak positions, and widths of the excitation
functions, for different system sizes characterized by the
centrality selections indicated in Fig. 2; the magnitude of
ðR2

out − R2
sideÞ was evaluated at the extracted peak positions

as well. The solid and dashed curves shown in the figure
gives an indication of the quality of these fits.
The extracted fit parameters were tested for the charac-

teristic finite-size scaling patterns associated with the
deconfinement phase transition via Eqs. (1) and (3) with
L ¼ R̄,

ðR2
out − R2

sideÞmax ∝ R̄γ=ν; ð4Þ
ffiffiffiffiffiffiffiffi
sNN

p ðVÞ ¼ ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ − k × R̄−ð1=νÞ; ð5Þ

with the aim of obtaining initial estimates for the critical
exponents ν and γ and the infinite volume

ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ value
where the deconfinement phase transition first occurs; k is a
constant. Here, δs≡ ð ffiffiffiffiffiffiffiffi

sNN
p −

ffiffiffiffiffiffiffiffi
scepNN

p
Þ=

ffiffiffiffiffiffiffiffi
scepNN

p
gives a mea-

sure of the “distance” to the CEP.
Figure 3 illustrates the finite-size scaling test made for

the extracted peak positions [
ffiffiffiffiffiffiffiffi
sNN

p ðVÞ]. Figure 3(a) shows
the peak positions versus R̄ while Fig. 3(b) shows the same
peak positions versus 1=R̄1.5. The dashed curve in Fig. 3(b),
which represents a fit to the data in Fig. 3(a) with Eq. (5),
confirms the expected inverse power law dependence of
these peaks on R̄. The fit gives the values

ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ ¼
47.5� 1.5 GeV and ν ¼ 0.67� 0.05. A similar value for ν
was obtained via an analysis of the widths obtained from
the Gaussian fits shown in Fig. 2. Note that this value offfiffiffiffiffiffiffiffi
sNN

p ð∞Þ is compatible with the striking pattern observed
in the excitation function for viscous damping [26,27].
This pattern is akin to that expected for ðη=sÞðT; μBÞ close
to the CEP [19,20].
Figure 4 illustrates the results of the finite-size scaling test

for ðR2
out − R2

sideÞmax. Figure 4(a) shows ðR2
out − R2

sideÞmax

versus R̄ while Fig. 4(b) shows the same data plotted versus
R̄2. The dashed curve in Fig. 4(b), which represents a fit to
the data in Fig. 4(a) with Eq. (4), confirms the expected
power law dependence of ðR2

out − R2
sideÞmax on R̄. Note that

the trend of this dependence is opposite to the inverse power
dependence shown in Fig. 3. The fit leads to the estimate
γ ¼ 1.15� 0.065. The indicated uncertainties for ν and γ
are derived from the fits.

FIG. 2 (color online). Comparison of ðR2
out − R2

sideÞ versusffiffiffiffiffiffiffiffi
sNN

p
for several centrality selections, as indicated. The data,

which are the same as those shown in Fig. 1, are taken from
Refs. [31,32]. The solid and dashed curves represent fits to the
combined data sets for each centrality, with the Gaussian fit
function ðR2

out − R2
sideÞ ¼ aþ b expð−0.5½ðx − cÞ=d�2Þ.

FIG. 3. (a) Peak position versus R̄. (b) Peak position versus
1=R̄1.5. The peak positions and associated error bars are obtained
from the Gaussian fits shown in Fig. 2. The dashed curve in (b)
shows the fit to the data in (a).
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The magnitudes of the extracted values for the critical
exponents ν ¼ 0.67� 0.05 and γ ¼ 1.15� 0.065 are dif-
ferent from the unit values expected for a first order phase
transition [29]. However, they are compatible with the
critical exponents for the second order deconfinement
phase transition for the 3D Ising model universality class
[42,43]. Consequently, we assign the location of the CEP to
the extracted value

ffiffiffiffiffiffiffiffi
sNN

p ð∞Þ ¼ 47.5 GeV and use the
parametrization for chemical freeze-out in Ref. [38] to
obtain the estimates μcepB ∼ 95 MeV and Tcep ∼ 165 MeV
for its location in the (T; μB) plane.
A crucial cross-check for the location of the CEP and its

associated critical exponents is the requirement that finite-
size scaling for different transverse sizes should lead to data
collapse onto a single curve for robust values of Tcep, μcepB ,
and the critical exponents ν and γ:

R̄−γ=ν × ðR2
out − R2

sideÞ versus R̄1=ν × tT;

R̄−γ=ν × ðR2
out − R2

sideÞ versus R̄1=ν × tμB ; ð6Þ
where tT ¼ ðT − TcepÞ=Tcep and tμB ¼ ðμB − μcepB Þ=μcepB are
the reduced temperature and baryon chemical potential,
respectively.
The validation of this cross-check is illustrated in

Fig. 5 where data collapse onto a single curve is indicated
for the RHIC excitation functions shown in Fig. 2. The
parametrization for chemical freeze-out [38] is used in
conjunction with μcepB and Tcep to determine the required tT
and tμB values from the

ffiffiffiffiffiffiffiffi
sNN

p
values plotted in Fig. 2.

Figures 5(a) and 5(b) also validate the expected trends for
reaction trajectories in the (T; μB) domain which encom-
pass the CEP. That is, the scaled values of ðR2

out − R2
sideÞ

peak at tT ≈ 0 and tμB ≈ 0 and show the collateral falloff
for tT;μB < 0 and tT;μB > 0.

In summary, we have investigated the centrality dependent
excitation functions for the Gaussian emission source radii
difference (R2

out − R2
side), obtained from two-pion interfer-

ometry measurements in Auþ Au (
ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV)
and Pbþ Pb (

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV) collisions, to search for
the CEP in the nuclear matter phase diagram. The observed
centrality dependent nonmonotonic excitation functions
validate characteristic finite-size scaling patterns which are
consistent with a deconfinement phase transition and the
critical end point. An initial finite-size scaling analysis of
these data suggests a second order phase transition with
Tcep ∼ 165 MeV and μcepB ∼ 95 MeV for the location of the
critical end point. The critical exponents (ν ¼ 0.67� 0.05
and γ ¼ 1.15� 0.065) extracted in the same FSS analysis,
places the CEP in the 3D Ising model universality class.
Further detailed studies at RHIC are crucial to make a more
precise determination of the location of the CEP and the
associated critical exponents, as well as to confirm these
observations for other collision systems.
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