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We present results for the relation between a heavy quark mass defined in the on-shell and minimal
subtraction (MS) scheme to four-loop order. The method to compute the four-loop on-shell integral is
briefly described and the new results are used to establish relations between various short-distance masses
and the MS quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important
role in the accurate determination of the MS heavy quark masses.
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The precise knowledge of quark masses plays an impor-
tant role in many phenomenological applications. This is in
particular true for the heavy top, bottom, and charm quarks.
For example, the top quark mass enters as a crucial
parameter the combined electroweak fits which have been
used to obtain indirect information about the Higgs boson
mass, and nowadays serve as consistency checks for the
standard model, see, e.g., Refs. [1,2]. The uncertainty in
the top quark mass is also dominant in the analyses of the
stability of the electroweak vacuum [3–5]. A prominent
example where a precise bottom quark mass is required are
B-meson decays which are often proportional to the fifth
power of mb. Precise charm and bottom quark masses are
important to obtain accurate predictions for the Higgs boson
decays into the respective quark flavors. Also in the context
of top and bottom Yukawa coupling unification, precise
mass values are indispensable since they serve as boundary
conditions at low energies. Last but not least, quark masses
enter the Lagrange density of the standard model as
fundamental parameters. Thus, it is mandatory to obtain
precise numerical values by comparing high-order theoreti-
cal predictions with precise experimental data.
At lowest order in perturbation theory there is no need to

fix the renormalization scheme for the quark masses.
However, after including quantum corrections it is necessary
to apply renormalization conditions which fix the renorm-
alization scheme. A natural scheme for heavy quark masses,
i.e., the charm, bottom, and top quarkmasses, is the on-shell
(OS) schemewhere one requires that the inverse heavy quark
propagator with momentum q has a zero at the position of
the on-shell mass,M, i.e., for q2 ¼ M2. It is well known that
perturbation theory has a bad convergence behavior in case
the on-shell quark mass is used as a parameter. Another
widely used renormalization scheme is based on minimal
subtraction. This means that the mass parameter entering
the quark propagator is defined in such a way that just
divergent terms (and no finite contributions) are absorbed

such that the quark propagator is finite (after wave function
renormalization). In this Letter we consider four-loop
corrections to the relation between the on-shell and the
minimal subtraction (MS) definition of a heavy quark mass
that allows for a precise conversion from one renormaliza-
tion scheme into the other.
For the various heavy quarks, different methods relying

on different quark mass definitions are used to extract the
mass values. For example, in Ref. [6] low-moment sum
rules have been used to extract directly the MS charm and
bottom quark masses without any reference to the on-shell
mass. On the other hand, physical observables inherently
connected to the threshold, like ϒ sum rules or top quark
pair production close to threshold, rely on properly defined
quark masses, like the potential subtracted (PS) [7], 1S
[8–10], or renormalon subtracted (RS) [11] definition.
When comparing with experimental data, in a first step
the corresponding mass values are extracted. Afterwards,
they are converted to the MS definition. Note that the
relation between the MS and the OS mass is an important
ingredient to obtain the relation between the PS, 1S, or RS
masses and the MS mass.
In this Letter we use the four-loop MS-OS relation to

establish relations between the PS, 1S, RS and the MS
quark mass, which are necessary to obtain the latter with
next-to-next-to-next-to-leading order (N3LO) accuracy.
Note that there is a further definition of a threshold mass,

the so-called kinetic mass [12] which has been used for
quite a number of applications in B physics, (see, e.g.,
Ref. [13]). However, the relation to the on-shell mass is
only known to two loops (NNLO). For this reason it is not
considered in the following.
In the following we first discuss the relation between the

MS and OS quark mass. Afterwards we elaborate on the
relation between the threshold (PS, 1S, and RS) and the MS
mass. The latter is obtained by using as starting point the
definition of the PS, 1S, or RS masses which establishes a
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relation to the pole mass. Afterwards the pole mass is
replaced by the MS mass which leads to the desired relation
between the short-distance masses.
To derive a formula relating the MS and OS quark mass

it is advantageous to start with relations between theses
masses and the bare mass, m0, which are given by (we
refrain from adding a superscript “OS” to the on-shell mass
but use a capital letter. Similarly, a lowercase m without
further superscript stands for the MS quark mass. For all
other mass definitions we use a lowercase “m” and a
superscript indicating the renormalization scheme.)

m0 ¼ ZMS
m m; m0 ¼ ZOS

m M: ð1Þ

ZMS
m is known to four loops and can be found in

Refs. [14–16]. By construction, the ratio of the two
equations in (1) is finite which leads to

zmðμÞ ¼
mðμÞ
M

; ð2Þ

where zm depends on αsðμÞ and logðμ=MÞ and has the
following perturbative expansion

zmðμÞ ¼
X

n≥0

�
αs
π

�
n
zðnÞm ; ð3Þ

with zð0Þm ¼ 1.
For a derivation of convenient formulas relating zmðμÞ to

the on-shell quark self energy we refer to Refs. [17–19]
where it is shown that ZOS

m is obtained from the sum of
scalar and vector contribution evaluated on-shell, i.e.,

ZOS
m ¼ 1þ ΣVðq2 ¼ M2Þ þ ΣSðq2 ¼ M2Þ: ð4Þ

One-, two-, and three-loop QCD results to ZOS
m have been

computed in Refs. [17,20] and [18,19,21,22], respectively,
and electroweak effects have been considered in
Refs. [23–27]. The main task of this Letter is the compu-
tation of the four-loop QCD corrections to ZOS

m and,
consequently, to zm. For convenience we introduce also
the inverse relation to Eq. (2) as follows:

M ¼ mðμÞcmðμÞ: ð5Þ

The PS quark mass has been introduced in Ref. [7]. Its
relation to the pole mass is given by

mPS ¼ M − δmðμfÞ; ð6Þ

with

δmðμfÞ ¼ −
1

2

Z

j~qj<μf

d3q
ð2πÞ3 Vð~qÞ; ð7Þ

where Vð~qÞ is the perturbative contribution to the static
heavy quark potential. δmðμfÞ can be computed in pertur-
bative QCD and has the form

δmðμfÞ ¼ μf
CFαs
π

�
1þ αs

4π

�
a1 þ β0

�
2þ log

μ2

μ2f

��

þ � � �
�
; ð8Þ

where β0 ¼ 11 − 2nl=3 is the one-loop coefficient of the
QCD β function and a1 ¼ 31=3 − 10nl=9 the one-loop
coefficient of the static potential. nl is the number of
massless quarks. μf is the factorization scale which is of the
order of the soft scale. In this Letter we use μf ¼ 2 GeV for
bottom and μf ¼ 20 GeV for top quarks. δmðμfÞ is known
to N3LO [28], which involves the three-loop corrections to
the static potential, a3 [29–31].
The N3LO relation between mPS and m is obtained by

inserting Eq. (5) into Eq. (6). All ingredients are already
expanded and the coefficients of ðαsÞn have simply to be
combined. In particular, the term in Eq. (6) involving a3 is
combined with the four-loop term in them-M relation. One
obtains an explicit formula to compute the PS mass in case
the MS is given. For a given PS mass we solve this equation
iteratively to obtain the MS mass.
The 1S mass is defined as half the perturbative mass of a

fictitious 13S1 state, where it is assumed that the quark is
stable. Thus, we have the following relation between the 1S
and on-shell mass [8–10]

m1S ¼ M þ 1

2
Ept
1 jαns→αns ε

n−1 ; ð9Þ

where Ept
1 is the perturbative ground state energy which is

available to third order [28,32,33]. The last missing
ingredient was the three-loop static potential which has
been evaluated in Refs. [29–31]. The replacement αns →
αnsε

n−1 implements the so-called ε expansion which guar-
antees that the appropriate orders in the expansions of Ept

1

and M (in terms of m) are combined.
The perturbative expansion of Ept

1 has the following form

Ept
1 jαns→αns ε

n−1 ¼ −ε
C2
FMα2s
8

X

n≥0

�
ε
αs
π

�
n
δðnÞE : ð10Þ

In order to obtain the relation between m1S and m one
has to replace αðnlþ1Þ

s in Eq. (5) by αðnlÞs and then apply the
replacement αns → αnsε

n. Afterwards it is inserted into
Eq. (9) and expanded in the parameter ε. This guarantees
that the NkLO term in Ept

1 is combined with the ðkþ 1Þ-
loop correction to cmðμÞ. In particular, in order to establish
the m1S-m relation to N3LO four-loop corrections to cmðμÞ
are needed. A given MS quark mass is transformed to the
1S mass by inserting the numerical value into the resulting
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equation. In case the 1S mass is given one obtains the MS
mass by solving the equation implicitly.
A further threshold mass, the so-called RS mass, has

been introduced in Ref. [11]. It is related to the pole mass in
such a way that the pure renormalon contributions are
subtracted. The corresponding formulas are derived and
explicitly given in Ref. [11]. In that reference also, a
variant, the so-called RS0 scheme, is discussed where no
subtraction is performed for the OðαsÞ term in the MS-OS
relation. Recently the numerical accuracy of the normali-
zation constant of the first renormalon has been improved
in Ref. [34], where also a variant of the RS and RS0 masses
has been suggested in which (in the case of the bottom
quark) the subtraction term is parameterized in terms of
αð3Þs . In this Letter we will adopt the prescription of
Ref. [11]. Similarly to the PS mass also for the RS mass
a subtraction scale has to be specified which we again
choose as μf ¼ 2 GeV for bottom and μf ¼ 20 GeV for
top quarks.
For the computation of the scalar and vector part of the

fermion propagator we use an automated setup which
generates all contributing amplitudes, processes them with
FORM3 [35] and provides scalar functions involving
several million different integrals encoded in functions
with 14 different indices that belong to 100 different
integral families.
The Laporta algorithm [36] is applied to each family

using FIRE5 [37] and CRUSHER [38], which are written in
C++. Then we use the code TSORT [39], which is part of the
latest FIRE version, to reveal relations between primary
master integrals following recipes of [40] and end up with
386 four-loop massive on-shell propagator integrals, i.e.,
with p2 ¼ M2.
We have performed the calculation allowing for a general

gauge parameter ξ keeping terms up to order ξ2 in the
expression we give to the reduction routines. We have
checked that ξ drops out after mass renormalization but
before inserting the master integrals.
For some master integrals, analytic results could be

derived using a straightforward loop-by-loop integration
for general space-time dimension. We also used analytical
results obtained for nontrivial four-loop on-shell master
integrals computed in our earlier paper, Ref. [41]. In
some other cases one- and twofold Mellin-Barnes repre-
sentations can be derived which allow for a high-precision
numeric evaluation, at least up to 20 digits. For some of
the master integrals, we applied threefold MB representa-
tions which enabled us to obtain a precision of eight
digits.
For factorizable integrals, we obtained analytic results

from known two- and three-loop results. In particular, we
used Ref. [42] where the expansion in ϵ ¼ ð4 − dÞ=2 has
been performed up to the order typical to four-loop
calculations. (d is the space-time dimension used to
compute the momentum integrals.)

We computed the remaining 332 integrals numerically
with the help of FIESTA [43–45]. FIESTA returns for each
ϵ coefficient a numerical result and the corresponding
uncertainty from the numerical integration. When inserting
the master integrals we keep track of all uncertainties and
combine them quadratically in the final expression. We
interpret the resulting uncertainty as a standard deviation
and multiply it by five in the final result for the relation
between the MS and OS quark mass. This is in agreement
with adding the uncertainties from the individual contri-
butions linearly.
We are now in the position to present numerical results

for zmðμÞ which have been obtained by setting the number
of colors to three (Nc ¼ 3) and the number of massless
quarks (nl) to either 3, 4, or 5, corresponding to the charm,
bottom, or top quark case, before combining the uncer-
tainties from the numerical integration of the master
integrals. Note that the coefficients up to three loops are
known analytically [18,19]. We refrain from listing the
corresponding results but refer to Eq. (13) of Ref. [46].
Analytical results are also available for the logarithmic
four-loop contributions since they can easily be obtained
using renormalization group methods. In the following we
restrict ourselves to compact numerical results. At four
loops we obtain for the coefficient of ðαs=πÞ4

zð4Þm jnl¼3 ¼ −1744.8� 21.5 − 703.48lOS − 122.97l2OS

− 14.234l3OS − 0.75043l4OS;

zð4Þm jnl¼4 ¼ −1267.0� 21.5 − 500.23lOS − 83.390l2OS

− 9.9563l3OS − 0.514033l4OS;

zð4Þm jnl¼5 ¼ −859.96� 21.5 − 328.94lOS − 50.856l2OS

− 6.4922l3OS − 0.33203l4OS; ð11Þ

with lOS ¼ lnðμ2=M2Þ. We obtain the μ-independent coef-
ficients with an accuracy of 1.2% for nl ¼ 3, 1.7% for
nl ¼ 4) and 2.5% for nl ¼ 5. In the numerical results
discussed below we will assume a relative uncertainty of
3% for all values of nl.
For convenience we also show the four-loop results for

cm which read

cð4Þm jnl¼3 ¼ 1691.2� 21.5þ 828.43lMS þ 189.65l2
MS

þ 36.688l3
MS

þ 4.8124l4
MS

;

cð4Þm jnl¼4 ¼ 1224.0� 21.5þ 601.98lMS þ 134.10l2
MS

þ 28.846l3
MS

þ 3.9648l4
MS

;

cð4Þm jnl¼5 ¼ 827.37� 21.5þ 408.88lMS þ 86.574l2
MS

þ 22.023l3
MS

þ 3.2227l4
MS

; ð12Þ
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with lMS ¼ lnðμ2=m2Þ. In the remaining part of this Letter
we will concentrate on the top and bottom quark mass.
As an application of the new results in Eqs. (11) and (12)

we study the relations between the various threshold
masses and the MS mass. We use the following input
values for the strong coupling constant and the bottom and
top quark masses [6,47,48]:

αð5Þs ðMZÞ ¼ 0.1185; mbðmbÞ ¼ 4.163 GeV;

Mt ¼ 173.34 GeV: ð13Þ

αs with four and six active flavors is obtained from αð5Þs

where for the decoupling scale we choose twice the heavy
quark mass [46,49].
Let us have a closer look to the relation between the OS

and MS top quark mass. For μ ¼ mt we have

Mt ¼ mtð1þ 0.4244αs þ 0.8345α2s þ 2.375α3s

þð8.49� 0.25Þα4sÞ
¼ 163.643þ 7.557þ 1.617þ 0.501

þ 0.195� 0.005 GeV; ð14Þ

with αs ≡ αð6Þs ðmtÞ ¼ 0.1088. Note that the four-loop
term still gives a contribution of about 200 MeV which
is not negligible even with nowadays uncertainties from
TEVATRON and LHC [48]. The corresponding results for
the bottom quark read

Mb ¼ mbð1þ 0.4244αs þ 0.9401α2s þ 3.045α3s

þð12.57� 0.38Þα4sÞ
¼ 4.163þ 0.401þ 0.201þ 0.148

þ 0.138� 0.004 GeV: ð15Þ

Here, αs ≡ αð5Þs ðmbÞ ¼ 0.2268. Note that the four-loop
corrections in Eq. (15) are almost as large as the three-
loop term. On the other hand, the perturbative series for the
case of the top quark has a reasonable behavior: the three-
loop coefficient is by a factor three smaller than the two-
loop one and the four-loop term is again smaller by a factor
2.5. This suggests that with the help of Eq. (14) the top
quark mass can be determined with an uncertainty below
200 MeV.
In practice it often happens that in a first step a threshold

quark mass is extracted from comparisons of higher order
calculations and experimental measurements. Afterwards
the threshold mass is converted to the M̄S quark mass. In
Tables I and II we show the results for the scale invariant
MS quark mass mqðmqÞ (q ¼ b; t) using one- to four-loop
accuracy for the conversion.
In the case of the top quark (cf. Table I) the three-loop

corrections amount to about 200–250 MeV which reduces

to {44, 8, 20} MeVat four loops for the {PS, 1S, RS} quark
mass. A 3% uncertainty in the MS-OS relation induces a
shift of 6 MeV in mtðmtÞ which is in general small as
compared to the four-loop contribution. Let us estimate the
final uncertainty from the conversion to the MS mass from
the quadratic combination of the 6 MeV with half of the
four-loop contribution (i.e., f44; 8; 20g × 1

2
MeV). This

leads to {23, 7, 11} MeV which should be added in
quadrature to the remaining uncertainties of the threshold
mass.
The results for mbðmbÞ computed from the PS, 1S, and

RS threshold masses are shown in Table II. The three-loop
corrections provide still sizable effects of up to 40 MeV
which reduces to at most 9 MeV at four loops. The
uncertainty in the four-loop MS-OS relation induces an
error of 4 MeV. Thus we arrive at a final error of
{4,6,5} MeV for the conversion from the {1S,PS,RS}
mass. This is not negligible, though in general much
smaller than other uncertainties involved in the quark mass
extraction (see, e.g., Refs. [34,50] and [51] for recent
determinations of mbðmbÞ where in intermediate steps the
1S, RS, and PS has been used, respectively).
The results of Tables I and II can be used, in combination

with similar calculations for different values of αsðMZÞ and
threshold masses, to construct the following approximation
formulas

mtðmtÞ
GeV

¼ 163.643� 0.023þ 0.074Δαs − 0.095ΔPS
mt
;

mtðmtÞ
GeV

¼ 163.643� 0.007þ 0.069Δαs − 0.096Δ1S
mt
;

mtðmtÞ
GeV

¼ 163.643� 0.011þ 0.067Δαs − 0.095ΔRS
mt
;

mbðmbÞ
GeV

¼ 4.163� 0.004þ 0.007Δαs − 0.018ΔPS
mb
;

mbðmbÞ
GeV

¼ 4.163� 0.006þ 0.008Δαs − 0.019Δ1S
mb
;

mbðmbÞ
GeV

¼ 4.163� 0.005þ 0.004Δαs − 0.018ΔRS
mb

ð16Þ

TABLE I. mtðmtÞ in GeV computed from the PS, 1S, and RS
quark mass using one- to four-loop accuracy. The numbers in the
last line are obtained by increasing the four-loop coefficient in
Eq. (12) by 3%.

No. of loops mPS ¼ 171.792 m1S ¼ 172.227 mRS ¼ 171.215

1 165.097 165.045 164.847
2 163.943 163.861 163.853
3 163.687 163.651 163.663
4 163.643 163.643 163.643
4ð×1.03Þ 163.637 163.637 163.637
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with Δαs ¼ ½0.1185 − αsðMZÞ�=0.001, ΔPS
mt

¼
ð171.792 GeV −mPS

t Þ=0.1, Δ1S
mt

¼ ð172.227 GeV−
m1S

t Þ=0.1, ΔRS
mt

¼ð171.215GeV−mRS
t Þ=0.1, ΔPS

mb
¼

ð4.483 GeV −mPS
b Þ=0.02, Δ1S

mb
¼ ð4.670 GeV −m1S

b Þ=
0.02, ΔRS

mb
¼ ð4.365 GeV −mRS

b Þ=0.02.
Let us finally compare in Table III our result for the four-

loop coefficient cð4Þm to predictions obtained on the basis of
different assumptions. In general good agreement is found,
in particular, with the results from Refs. [34,55,56] which
are all based on renormalon cancellation. For example, in
Ref. [56], the four-loop coefficient is extracted from the
requirement of perturbative stability of the combination
2mpole þ VQCD, where VQCD is the static potential of two
heavy quarks. The estimates in Ref. [53] have been
obtained only on the basis of the two-loop results, leading,
nevertheless, to good approximations. Somewhat lower
results have been obtained in Ref. [54] where dispersive
methods have been used and large π2 terms have been
identified. In Ref. [52] the four-loop relation between the
on-shell and MS quark mass has been estimated using the
large β0 approximation.
To conclude, in this Letter we have computed the four-

loop corrections between the on-shell and MS definition of
heavy quarks. Our main results are given in Eqs. (11) and
(12) for charm, bottom, and top quarks. As applications we
have derived precise relations between the PS, 1S, and RS
threshold masses and the MS quark mass.
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