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Recently, several broad classes of inflationary models have been discovered whose cosmological
predictions, in excellent agreement with Planck, are stable with respect to significant modifications of the
inflaton potential. Some classes of models are based on a nonminimal coupling to gravity. These models,
which we call ξ attractors, describe universal cosmological attractors (including Higgs inflation) and
induced inflation models. Another class describes conformal attractors (including Starobinsky inflation and
T models) and their generalization to α attractors. The aim of this Letter is to elucidate the common
denominator of these attractors: their robust predictions stem from a joint pole of order 2 in the kinetic term
of the inflaton field in the Einstein frame formulation prior to switching to the canonical variables. Model-
dependent differences only arise at subleading level in the kinetic term. As a final step towards the
unification of the different attractors, we introduce a special class of ξ attractors which is fully equivalent to
α attractors with the identification α ¼ 1þ ð1=6ξÞ. While r is generically predicted to be of the order 1=N2,
there is no theoretical lower bound on r in this class of models.
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Introduction.—The data releases by Wilkinson
Microwave Anisotropy Probe and Planck brought attention
to a mysterious fact: two different models, the Starobinsky
model [1] and the Higgs inflation model [2], make the
same prediction, matching well with observational data—
both of Planck2013 [3] as well as Planck2014. In the
leading approximation in 1=N, where N is the number of
e-folds, the spectral index ns and tensor-to-scalar ratio r are
given by

ns ¼ 1 −
2

N
; r ¼ 12

N2
: ð1Þ

This could be a coincidence, but further investigation
revealed the existence of several broad classes of different
models having the same predictions in the leading approxi-
mation in 1=N, practically independent of the details of
the model.
The first class of these theories was conformal attractors

[4], which described a broad variety of different models
including the Starobinsky model. Further investigation
revealed the existence of α attractors [5,6], which gener-
alized the models of conformal attractors, but predicted, for
not-too-large values of the parameter α, that

ns ¼ 1 −
2

N
; r ¼ 12α

N2
: ð2Þ

The Lagrangian of the α-attractor models of a real scalar
field ϕ looks as follows in the Einstein frame,

LE ¼ ffiffiffiffiffiffi
−g

p �
1

2
R −

α

ð1 − ϕ2=6Þ2
ð∂ϕÞ2
2

− αf2ðϕ=
ffiffiffi
6

p
Þ
�
:

ð3Þ

It was shown in Refs. [4–6] that the predictions (2) of this
class of models are stable with respect to major changes of
the inflaton potential, which has a functional freedom in
terms of an arbitrary f. In this context, the Starobinsky
model [1] corresponds to a special choice for this function
with α ¼ 1.
Note that both the kinetic and potential energies have

an overall coefficient α. While the former appears in
all versions of α-attractor models, the latter is a matter
of choice since the functions f are nearly arbitrary.
However, by placing α in front of it, one reaches an
important goal: while the parameter r is proportional to α,
both the parameter ns and the amplitude of the scalar
perturbations of the metric are independent of it for this
class of theories.
Another class of models [2,7,8] described cosmological

attractors with a nonminimal coupling to gravity,

LJ ¼
ffiffiffiffiffiffi
−g

p �
1

2
ΩðϕÞR −

1

2
KJðϕÞð∂ϕÞ2 − VJðϕÞ

�
; ð4Þ

which we refer to as the Jordan frame. For Ω ¼ 1þ ξϕ2,
VJ ¼ λϕ4, andKJ ¼ 1, it is described as the Higgs inflation
[2]. In a more general class of models, one retains the same
functional relation between the nonminimal coupling and
scalar potential,
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VJðϕÞ ¼
λ

ξ2
ðΩðϕÞ − 1Þ2 ð5Þ

but allows for a different form of these functions. For
instance, the universal attractor models are based on
Ω¼ 1þξfðϕÞ with an arbitrary function f, and KJ ¼ 1 [7].
In the class of induced inflation models [8], one has

Ω ¼ ξfindðϕÞ > 0 and KJ ¼ 1. This class of theories is
equivalent to the class of universal attractors up to the
redefinition findðϕÞ ¼ fðϕÞ þ ξ−1 [9]. However, it is con-
venient to consider these two classes of models separately
by defining universal attractors as the theories whereΩ ¼ 1
in the limit ϕ → 0 and induced inflation as the theories
where Ω ¼ 0 in the limit ϕ → 0. The inflationary predic-
tions of all of these models depend on ξ but coincide with
Eq. (1) in the large-ξ limit and are stable with respect to
certain further modifications of VJðϕÞ to be discussed in
this Letter. Other choices of Ω and KJ have been also
discussed in the literature. In this Letter, we will call all
models of this type ξ attractors.
In addition to models with one attractor point, there were

double attractors [10]; their predictions interpolated bet-
ween the predictions of α attractors with small α or induced
inflation at large ξ and the predictions r ¼ 4ð1 − nsÞ ¼
8=N of the simplest chaotic inflation model 1

2
m2ϕ2 in the

opposite parameter limit.
Despite a deepening understanding of the nature of these

models [9], a direct link between the models with non-
minimal coupling and the α attractors was missing, and
their predictions coincided with each other only in certain
limits. In this Letter, we aim to clarify both the relations and
differences between these models and unravel the origin of
the robust inflationary predictions (2).
Kinetic formulation.—Our starting point is a simple

observation that can be phrased as “The inflationary
predictions of models whose kinetic term is given by a
Laurent series are determined by the order and the residue
of the leading pole of the series.” In the above, we have
assumed minimal coupling to gravity, i.e., Einstein frame,
as well as a smooth scalar potential at the location of the
pole. Such a model can be summarized as

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
KEðρÞð∂ρÞ2 − VEðρÞ

�
: ð6Þ

The case where KE is given by a Laurent series (where we
have assumed the pole to be located at ρ ¼ 0 without loss
of generality)

KE ¼ ap
ρp

þ � � � ; VE ¼ V0ð1þ cρþ � � �Þ ð7Þ

is particularly interesting: it corresponds to a fixed point of
the inflationary trajectory, which is characterized almost
completely by the properties of this point. Indeed, in the
limit of a large number of e-folds, one can assume that only

the leading pole in KE is relevant. This leads to the simple
relation (where we will assume p > 1 for simplicity)

N ¼
Z

ap
cρp

dρ ∼
apρ1−p

cðp − 1Þ : ð8Þ

Upon inverting this relation, one can calculate the spectral
index and tensor-to-scalar ratio at leading order in 1=N,

ns ¼ 1 −
p

p − 1

1

N
; r ¼ 8cðp−2=p−1Það1=p−1Þp

ðp − 1Þðp=p−1Þ
1

Nðp=p−1Þ :

ð9Þ

Indeed, the spectral index depends solely on the order of
the pole, while the tensor-to-scalar ratio also involves the
residue. Note that this yields the same relation between
the 1=N coefficient of the spectral index and the 1=N power
of the tensor-to-scalar ratio as stressed in Ref. [11].
Moreover, the kinetic formulation defines not only the
power of 1=N but also the coefficient in the above formula
for r.
The above holds for all values of p > 1, for example,

hilltop inflation models [12] where VE ¼ V0½1 − ðφ=μÞn�
with p ¼ 2 − 2=n, where n can be both negative and
positive n ≥ 2. However, in what follows, we will be
mainly interested in the case p ¼ 2: it is singled out as
it allows for a superconformal and supergravity description
and arises as a consequence of a nonminimal coupling to
gravity. In particular, we will show that all cosmological
attractors can be brought to the form (6) with a kinetic term
that has a pole or order 2 at a location where the scalar
potential is perfectly smooth. In other words, all attractors
have a common denominator in the Laurent expansion (7).
In this case, the general pole predictions (9), indeed, lead
to Eq. (2) with the identification ap ¼ 3

2
α. This provides a

unified approach to their cosmological predictions, inde-
pendent of the structure of the inflationary potentials,
provided these are smooth at the point ρ ¼ 0.
α attractors.—To demonstrate the equivalence of the

above to α attractors, we start from the original formulation
of the theory of conformal attractors and α attractors [4–6]
given in a noncanonical field ϕ as Eq. (3). Its kinetic term
has two poles of order 2, related by symmetry ϕ → −ϕ.
Without loss of generality, we will focus on the pole located
at ϕ ¼ ffiffiffi

6
p

. Expanding around this pole, we find a Laurent
expansion

KE ¼ 3α

2

1

ðϕ −
ffiffiffi
6

p Þ2 −
ffiffiffi
6

p
α

4

1

ϕ −
ffiffiffi
6

p þ � � � : ð10Þ

Indeed, we find the same leading pole of order 2 with
residue 3

2
α in addition to subleading terms. Similarly, for a

generic choice of the function f, the scalar potential is a
Taylor series around the point ϕ ¼ ffiffiffi

6
p

.
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By means of field redefinitions, one can change the form
of the subleading terms and trade certain subleading
corrections to others. For instance, in this case, one can
redefine the field ϕ into a new variable ρ, such that the
kinetic term becomes only a pole in ρ, without additional
terms. This can be performed by

ϕffiffiffi
6

p ¼ 1 − ρ

1þ ρ
: ð11Þ

The Lagrangian of the α-attractor models (3) in the new
variables ρ has

KE ¼ 3α

2

1

ρ2
; VE ¼ αf2

�
1 − ρ

1þ ρ

�
: ð12Þ

Finally, one can go to a canonical field φ with KE ¼ 1,
where the scalar potential reads VE ¼ αf2½tanhðφ= ffiffiffiffiffiffi

6α
p Þ�.

For α ¼ 1 and monomial functions f, they coincide with
the T models from the theory of conformal attractors [4].
Note that the kinetic terms blow up at ϕ ¼ ffiffiffiffiffiffi

6α
p

or ρ ¼ 0.
While the subleading corrections are different, both cases
have the same leading term; this corresponds to a pole of
order 2 with residue 3α=2. It is this singularity that is
responsible for the stability of predictions of these theories
(2) with respect to strong deformations of the inflationary
potential near the boundary of the moduli space at ρ ¼ 0.
Subleading corrections in either the Laurent expansion of
the kinetic term or the Taylor expansion of the potential
term are irrelevant in the large-N limit.
In terms of the canonical scalar field, this boundary is

located at φ close to infinity. For generic functions f, the
scalar potential will asymptote to a plateau at infinity and
will have an exponentially suppressed falloff with leading

term e−
ffiffiffiffiffiffiffi
2=3α

p
φ. It is this leading term that determines all

inflationary properties at large N.
Nonminimal coupling and special attractors.—

Similarly, there is an interesting relation to ξ attractors
based on a nonminimal coupling between the gravitational
and inflationary sector. Therefore, we generalize our
starting point to the Jordan frame (4). By means of a
conformal transformation for Ω > 0, it can be brought to
the Einstein frame with

KE ¼
�
3Ω02

2Ω2
þ KJ

Ω

�
; VE ¼ VJðϕÞ

Ω2
: ð13Þ

So far, only models with KJ ¼ 1 have been considered,
where the parameter ξ was a part of the choice of the
functionΩðϕÞ in Eq. (4). Now we will define a new class of
theories, which we will call special attractors. They will be
defined by the following choice of functions in Eq. (4),

KJ ¼
1

4ξ

ðΩ0Þ2
Ω

; VJðϕÞ ¼ Ω2UðΩÞ: ð14Þ

Thus, we absorbed the ξ dependence into the factor KJ.
Then the theory (4) in the Einstein frame becomes

LE ¼ ffiffiffiffiffiffi
−g

p �
R
2
−
3α

4

�∂Ω
Ω

�
2

− UðΩÞ
�
; α≡ 1þ 1

6ξ
:

ð15Þ
In this theory, Ω becomes the field variable. Its kinetic term
is exactly of the form (7) with a pole of order 2 and no
subleading corrections. However, physically this does not
correspond to the same limit; while the α attractors derive
their attractor predictions from the region close to ρ ¼ 0,
inflation in the ξ attractors takes place at very large Ω very
large. Therefore, it is natural to identify

ρðϕÞ ¼ Ω−1ðϕÞ: ð16Þ
Note that a pole of order 2 is exactly invariant under this
redefinition and retains the same form.
In order for the kinetic energy to be well defined, one has

to require that α is positive. There are three regions of the
parameter ξ; the condition α > 0 is satisfied in the first two
of them: (i) ξ > 0, with α > 1, or (ii) −∞ < ξ < − 1

6
corresponding to 0 < α < 1, while (iii) intermediate
regions with −1=6 < ξ < 0 lead to a wrong sign of the
Einstein frame kinetic term. The limiting case with α ¼ 1
can be reached either in the limit ξ → ∞ or ξ → −∞, while
α ¼ 0 is accessible via ξ → −1=6 from below.
It is important to take stock of the situation at this point.

In particular, one can allow ξ to become negative (and α
smaller than 1) at a very specific price: the Jordan frame
kinetic term (14) has the wrong sign. While this could seem
dangerous, for −∞ < ξ < − 1

6
this danger is, in fact,

fictitious, as it does not lead to negative kinetic terms
and instability in the Einstein frame.
This phenomenon is reminiscent of the Breitenlohner-

Freedman bound in anti–de Sitter space. In that case,
an apparent instability due to a negative mass can be cured
by the nontrivial geometry, provided the mass satisfies
the Breitenlohner-Freedman bound [13]. In our case, an
apparent instability due to a negative kinetic energy can
be cured by the nonminimal coupling in Jordan frame,
provided the coefficient 1=ð4ξÞ of the negative term in
Eq. (14) is sufficiently small such that α is positive.
One can represent the theory (15) in terms of a

canonically normalized inflaton field φ defined by

Ω ¼ e
ffiffiffiffiffiffiffi
2=3α

p
φ as

LE ¼ ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
ð∂φÞ2 −Uðe

ffiffiffiffiffiffiffiffiffiffi
ð2=3αÞ

p
φÞ
�
: ð17Þ

For the special choice UðΩÞ ¼ αf2ð1 −Ω=1þΩÞ, this
theory coincides with the class of α attractors defined in
Eq. (12), with VE ¼ αf2½tanhðφ= ffiffiffiffiffiffi

6α
p Þ�. In particular, for

the simplest choice fðxÞ ¼ cx, where c is some constant,
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one finds the α generalization of the simplest T-model
potential [4,6]

V ¼ αc2tanh2
φffiffiffiffiffiffi
6α

p : ð18Þ

For fðxÞ ¼ ðcx=1þ xÞ, which is equivalent to the choice
VJ ¼ c2ðΩ − 1Þ2, one finds the α-β model [5]

V ¼ αc2ð1 − e−
ffiffiffiffiffiffiffiffiffiffi
ð2=3αÞ

p
φÞ2; ð19Þ

which generalizes the Starobinsky potential. More general
choices of potentials are possible; e.g., one can add toUðΩÞ
corrections

ΔUðΩÞ ¼
X∞
i¼2

ciΩ−i ¼
X∞
i¼2

ciρi: ð20Þ

This results in the subleading corrections in e
ffiffiffiffiffiffiffiffiffiffi
ð2=3αÞ

p
φ,

which do not affect the inflationary predictions in the
large-N limit.
Induced inflation.—Induced inflation is defined by

Eq. (4) with Ω ¼ ξfðϕÞ and the scalar potential given
by the usual relation (5). This theory is well defined (i.e., it
describes gravity instead of antigravity) only for Ω > 0.
Without any loss of generality, one can define this class of
theories by requiring ξ > 0, fðϕÞ > 0. Then, independent
of the function fðϕÞ, which, in principle, can be chosen
arbitrary, the inflationary predictions of this model coincide
with Eq. (1) in the limit of ξ → þ∞ [8]. Moreover, in the
opposite limit ξ → 0, the predictions approximate those of
quadratic inflation, again independent of the functional
choice [10].
Remarkably, for the special case Ω ¼ ξϕ2 and ξ > 0, the

induced inflation model in the Einstein frame is also
represented by the special attractor action (15). In this
model, VJ ¼ ðλ=ξ2ÞðΩ − 1Þ2, and the Einstein frame
potential for α ¼ 1 is given by Eq. (19) with c2 ¼ λ=ξ2.
This choice of c2 here is not required; it was motivated by
the desire to implement the Higgs inflation scenario [8].
But the potential (19) is different from the Higgs inflation
potential anyway: it is not symmetric with respect to the
change φ → −φ, and it does not contain an important part
of the potential at intermediate values of φ where the
potential is quartic in φ. However, it is important that it
belongs to the class of the special attractors. Moreover,
it allows for the same generalization (20) of the scalar
potential.
Universal attractors.—Finally, we wish to emphasize

how the universal attractor models of Ref. [7] are related
to α attractors and spell out how they fit in the present
framework. The universal attractor models considered
in Ref. [7] are defined by the choice KJ ¼ 1 and
Ω ¼ 1þ ξfðϕÞ for an arbitrary function fðϕÞ.

In the limit when ξ → ∞, the inflationary predictions of
these models coincide with those of the induced models
with Ω ≈ ξfðϕÞ, as well as those of special attractors and α
attractors for α ≈ 1. In this limit, there is no need to make a
choice fðϕÞ ¼ ϕ2 (as we did in the case of an exact relation
between the α models and generalized induced inflation
models above). In the limit ξ → ∞, the second term in
Eq. (13) can be neglected and we find

KE ¼ 3

2

1

ρ2
; VE ¼ λ

ξ2
ð1 − ρÞ2; ð21Þ

where we have replaced the nonminimal coupling ΩðϕÞ
(which can be chosen arbitrarily) by its inverse ρ. Here
we see again that the pole structure at ρ ¼ 0 allows us to
deform the potential and, instead of the function (5),
consider any function with additional terms with higher
powers of ρ ¼ e−

ffiffiffiffiffiffiffiffi
ð2=3Þ

p
φ.

Moreover, one can calculate the subleading corrections
to the above kinetic term that arise for finite values of ξ.
For instance, in the case of Higgs inflation with f ¼ ϕ2,
the full kinetic term for the field ρ is given by

KE ¼ 3

2

1

ρ2
þ 1

4ξ

1

ð1 − ρÞρ2 ¼
3α

2

1

ρ2
þ 1

4ξ

1

ρ
� � � þ : ð22Þ

While this has the same leading pole, subleading correc-
tions will be different. A particularly acute difference with
respect to the case of induced inflation discussed in the
previous subsection is that the kinetic term is not neces-
sarily positive definite. In particular, inflation takes place
close to ρ ¼ 0, while the Minkowski vacuum is located at
ρ ¼ 1. In the latter regime, the second term will always be
dominant. Therefore, Higgs inflation does not allow one to
take ξ negative even in the Einstein frame, in contrast to
induced inflation; in addition to the condition α > 0 from
the inflationary regime, one also requires ξ > 0 from the
cosmological era following inflation.
Discussion.—Provided the kinetic term of the inflaton is

given by a Laurent series, its inflationary predictions are, to
a large extent, determined by the properties of the leading
pole and, therefore, robust to changes to the subleading
terms, either in the kinetic or the potential energy. Such a
pole of order 2 underlies the attractor properties of both α
and ξ attractors and, therefore, yields the inflationary
predictions (2).
Next, we have explicitly demonstrated the unity of these

two types of attractors, either based on nontrivial kinetic
terms or on nonminimal couplings; when transforming ξ
attractors from the Jordan to the Einstein frame, one obtains
α attractors and vice versa. Moreover, we have emphasized
that there are special type of attractors whose kinetic term
consists only of a single pole: both the original α attractors
of [6] as well as induced inflation [8] are of this form. This
is illustrated in Fig. 1.
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The introduction of generalized ξ attractors including the
special attractors (14) opens a simple way towards the
unification of all presently known cosmological attractors.
We have shown that the class of the special attractors is
equivalent to α attractors with α ¼ 1þ ð1=6ξÞ > 0. This
relation between both parameters, which is one of our main
results, embodies the two viable ranges ξ > 0 and
ξ < −1=6. In the Jordan frame, only the first of these
has a positive kinetic term corresponding to α ≥ 1.
However, similar to the Breitenlohner-Freedman bound,
the theory is well defined for both cases: it has positive
kinetic term in the Einstein frame, and it does not exhibit
any instability. There is no theoretical lower bound on
r ¼ 12α=N2 in this class of models.
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