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Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar
polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms
of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where
n is the local cohomogeneity of the spacetime.
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How may one locate a black hole? This question may be
quite challenging even for numerical computation, for the
location of a black hole horizon is a delicate issue. Here we
propose a method which generically gives the precise
location of any stationary horizon and should give the
approximate location of a nearly stationary horizon. Hence
it should be useful for numerical computations in general
relativity.
For a general black hole spacetime, the location of its

surface (the event horizon, which is the boundary of the
region from which causal curves can go to asymptotic
future null infinity) depends on the future evolution of the
spacetime and is not determined locally. However, for black
holes that settle down to become stationary, one might ask
whether one can find a local invariant that is generically
nonzero off the horizon but vanishes on the horizon. In
particular, one might look for a scalar polynomial curvature
invariant [1–7], which is a scalar obtained by complete
contraction of all the indices of a polynomial in the
Riemann curvature tensor Rαβγδ and its covariant deriva-
tives. For example, Karlhede, Lindström, and Aman [8]
showed that Rαβγδ;ϵRαβγδ;ϵ crosses zero and switches sign as
one crosses the horizon of the Schwarzschild metric, and
one can easily show that this is also true for any smooth
static spherically symmetric horizon. An invariant that
vanishes on more general stationary horizons could be
useful in numerical relativity for finding the approximate
location of the horizon once the spacetime has settled down
to become approximately stationary.
Abdelqader and Lake [9] have recently found a local

scalar polynomial curvature invariant that vanishes on the
horizon of the Kerr black hole. After casting this invariant
into a simpler form that is proportional to the squared norm
of the wedge product of two curvature-invariant gradients,
we realized that the procedure generalizes to give a way to
locate any nonsingular stationary horizon in terms of local
curvature invariants. Essentially, if one constructs as many
gradients of independent curvature invariants as the local
cohomogeneity of a generic stationary spacetime, at a
generic point in the spacetime outside an horizon these

gradients will be linearly independent and spacelike, but on
the horizon, a linear combination will become null. This
implies that the squared norm of the wedge product of the
gradients will vanish on a stationary horizon.
Our procedure does not assume the Einstein equations,

but only a smooth stationary horizon (a null hypersurface
generated by a Killing vector field that is timelike outside
the horizon but null on the horizon). Therefore, in principle,
the invariants to be used in the procedure could include
those from the Ricci tensor Rαβ, such as the Ricci scalar
R ¼ Rα

α or RαβRαβ. However, because the main interest may
be in Ricci-flat (Rαβ ¼ 0) spacetimes that solve the vacuum
Einstein equations, in the examples below we shall con-
sider only invariants obtained from the Riemann curvature
tensor Rαβγδ (or from the Weyl tensor Cαβγδ, which is the
trace-free part of the Riemann tensor) that need not vanish
even when Rαβ ¼ 0.
In the original (30 Dec. 2014) version of their paper,

Abdelqader and Lake [9] gave the following six curvature
invariants for the Kerr metric, which we here copy directly
from that paper:

I1 ≡ CαβγδCαβγδ; ð1Þ

I2 ≡ C�
αβγδCαβγδ; ð2Þ

I3 ≡∇μCαβγδ∇μCαβγδ; ð3Þ

I4 ≡∇μCαβγδ∇μC�αβγδ; ð4Þ

I5 ≡ kμkμ; ð5Þ

and

I6 ≡ lμlμ; ð6Þ

whereCαβγδ is theWeyl tensor,C�
αβγδ its dual, kμ ≡ −∇μI1,

and lμ ≡ −∇μI2. Then they showed that in the Kerr metric
the dimensionless scalar nonpolynomial curvature invariant
(with scalar polynomial curvature invariant numerator)
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Q2≡ðI5þI6Þ2−ð12=5Þ2ðI12þI22ÞðI32þI42Þ
108ðI12þI22Þ5=2

ð7Þ

vanishes on the black hole horizon.
We found that the syzygy (in this context a functional

relationship between invariants for a particular spacetime
geometry) that Abdelqader and Lake [9] discovered for the
Kerr metric, that

I6 − I5 þ
12

5
ðI1I3 − I2I4Þ ¼ 0; ð8Þ

may be expressed as the real part of the complex syzygy

∇μðI1þ iI2Þ∇μðI1þ iI2Þ¼
12

5
ðI1þ iI2ÞðI3þ iI4Þ; ð9Þ

whose imaginary part gives a syzygy for a seventh
invariant,

I7 ≡ kμlμ ¼
6

5
ðI1I4 þ I2I3Þ: ð10Þ

Using both the real and imaginary parts of this complex
syzygy, one may readily see that

27ðI12þI22Þ5=2Q2¼ðkμkμÞðlνlνÞ−ðkμlμÞðlνkνÞ; ð11Þ

which is the squared norm of the wedge product dI1 ∧ dI2
of the gradients of the Kretschmann invariant I1 and of the
Chern-Pontryagin invariant I2 (for a Ricci-flat spacetime;
otherwise, in four dimensions, the Kretschmann invariant is
RαβγδRαβγδ ¼ I1 þ 2RαβRαβ − ð1=3ÞR2, though the Chern-
Pontryagin invariant R�

αβγδRαβγδ ¼ I2 has no correction
from the Ricci tensor).
Although it is incidental to the main point of our Letter,

we also found another syzygy from a minor extension of
the work of Abdelqader and Lake [9],

ℑ½ðI1 þ iI2Þ4ðI3 − iI4Þ3� ¼ 0; ð12Þ

where ℑ denotes the imaginary part of what follows. (The
real part is equal to the absolute value in this case and does
not vanish to give yet another syzygy.) With these three
syzygies for the seven real scalar polynomial curvature
invariants, I1;…; I7, one is left with four independent
invariants, precisely the right number to determine generi-
cally (up to eight sign choices) the values of the two Kerr
parameters M and a and of the two nonignorable coor-
dinates r and θ. (None of these three remain syzygies when
one adds a cosmological constant, so the syzygies for that
case remain to be found.)
Equation (11) for the Abdelqader-Lake invariant Q2 that

they found vanishes on the horizon of the Kerr metric
inspired the realization that the squared norm of the wedge
product of n gradients of independent local smooth

curvature invariants would vanish on the horizon of any
stationary black hole, where n is the local cohomogeneity
of the spacetime (the codimension of the maximal dimen-
sional orbits of the isometry group of the local metric,
ignoring the breaking of any of these local isometries by
global considerations, such as the way that the identifica-
tions of flat space to make a torus break the local rotational
part of the isometry group), so that at generic points outside
a horizon of a generic metric of local cohomogeneity n, the
squared norm of the wedge product would be positive. (We
use the metric signature −þþ � � �.) Let us now prove that
this squared norm vanishes on a stationary horizon.
Let D be the dimensionality of the spacetime, and let m

be the maximal dimension of the orbits of the local
isometry group. Then n ¼ D −m is the local cohomoge-
neity of the spacetime. For a stationary spacetime of local
cohomogeneity n with an event horizon, let ξμ denote the
Killing vector field that on the horizon is its null generator,
which is orthogonal to the null horizon hypersurface. In a
neighborhood outside the horizon, ξμ will be timelike, with
ξμξμ < 0 in our choice of signature. Let fSðiÞg, for i ranging
from 1 to n, denote a set of n functionally independent
nonconstant scalar polynomial curvature invariants (total
scalar contractions over all indices of polynomials of
curvature tensors and of their covariant derivatives). For
example, some or all of the SðiÞ could be chosen from the
set I1;…; I7 given above (though remembering that I2, I4,
I6, and I7 above are only defined for D ¼ 4), but one could
also choose invariants from total scalar contractions of
other polynomials in the Riemann curvature tensor and its
covariant derivatives.
Then let fdSðiÞg be the set of exterior derivatives

(gradients) of the n scalar polynomial curvature invariants,

with components SðiÞ;μ ¼ ∇μSðiÞ. Since the curvature invar-
iants are invariant under translations by the local isometry
group, their gradients all lie within the n-dimensional
local cohomogeneity part of the cotangent space at each
point [6]. The wedge product of n gradients, the n-form
W ¼ dSð1Þ ∧ dSð2Þ ∧ � � � ∧ dSðnÞ, will be proportional to
the volume form in this n-dimensional part of the cotangent
space at each point of spacetime, with a proportionality
depending upon the spacetime point. At generic points in a
generic spacetime, the proportionality will be nonzero
where the gradients of the n scalar invariants are linearly
independent, but there can be a set of points (generically
hypersurfaces) where the n gradients are not linearly
independent, so that the wedge product vanishes there
and the proportionality is zero.
The Hodge dual �W is then an m-form that at each point

of the spacetime lies entirely within them-dimensional part
of the cotangent space that is generated by the local
isometries. It will be proportional to the m-dimensional
volume element of that part of the cotangent space, though
the location-dependent proportionality will be zero at the
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same set of spacetime points at which the wedge product
W vanishes.
On a stationary horizon, which is a null hypersurface

generated by the Killing vector ξμ that is timelike outside
the horizon but null on the horizon (and hence both parallel
and orthogonal to the horizon), the m-dimensional part of
the cotangent space will include the null one-form, with
one-form components ξμ ¼ gμνξν, which is metrically
equivalent to the Killing vector ξμ that is null and hyper-
surface-orthogonal at the horizon, as well as other spacelike
one-forms metrically equivalent to other Killing vectors at
the horizon that are all spacelike if m > 1. Therefore, this
m-dimensional part of the cotangent space will be null on
the stationary horizon, and hence �W will also be null,
having zero squared norm. Since the squared norm of W,
appropriately defined, is the same as that of its Hodge dual
�W, the squared norm of the wedge product W of n scalar
polynomial curvature invariants will be zero on a stationary
horizon.
There is of course in this argument the implicit

assumption that the spacetime is sufficiently regular at
the event horizon that the gradients of the n scalar
polynomial curvature invariants are well defined at the
horizon, so that their wedge product W is well defined
and finite.
We summarize this result by the following theorem:
Theorem.—For a spacetime of local cohomogeneity n

that contains a stationary horizon (a null hypersurface that
is orthogonal to a Killing vector field that is null there and
hence lies within the hypersurface and is its null generator)
and which has n scalar polynomial curvature invariants SðiÞ
whose gradients are well defined there, the n-form wedge
productW ¼ dSð1Þ ∧ dSð2Þ ∧ � � � ∧ dSðnÞ has zero squared
norm on the horizon,

∥W∥2 ≡ 1

n!
δα1…αn
β1…βn

gβ1γ1 � � � gβnγn

× Sð1Þ;α1 � � � SðnÞ;αn S
ð1Þ
;γ1 � � � SðnÞ;γn ¼ 0; ð13Þ

where the permutation tensor δα1…αn
β1…βn

is þ1 if α1…αn is an
even permutation of β1…βn, is −1 if α1…αn is an odd
permutation of β1…βn, and is zero otherwise (including all
cases of repeated indices upstairs or downstairs).
Then ∥W∥2 is itself a scalar polynomial curvature

invariant that vanishes on any stationary horizon smooth
enough forW to be well defined there. Of course, for this to
be useful for locating a stationary horizon, the n scalar
polynomial curvature invariants SðiÞ should be chosen to be
functionally independent so that ∥W∥2 is positive at generic
points in the spacetime outside the horizon. This will not
always be possible, such as for the cosmological horizon of
de Sitter spacetime, which is totally homogeneous and
hence has cohomogeneity n ¼ 0, though of course for this
spacetime there are cosmological horizons running through
every point.

This raises the following question: For a spacetime of
local cohomogeneity n with a Killing horizon that is a
locally unique hypersurface (by locally unique, we mean
that any neighborhood of the horizon includes points not on
a Killing horizon, unlike the case for de Sitter or certain
other examples, such as spacetimes having a covariantly
constant null vector field, that have Killing horizons
through all points), are there always enough functionally
independent scalar polynomial curvature invariants so that
one can choose n of them in such a way that the squared
norm of the wedge product of their gradients is generically
nonvanishing away from the horizon? If the answer is “no,”
then although our theorem above would remain true, the
squared norm of the wedge product of the gradients of any
n scalar polynomial curvature invariants would vanish in a
whole neighborhood of a stationary horizon, so it would
not be useful for locating the horizon. Based upon the work
of Coley, Hervik, and Pelavas [3–5], one might conjecture
that the answer to the question is “yes,” but so far we do not
have a rigorous proof.
Let us now consider various examples in four-dimen-

sional spacetimes of the fact that the squared norm of the
wedge product of n gradients of curvature invariants
vanishes at the horizon of a stationary black hole.
First, consider a spherically symmetric static black hole,

so the codimension is n ¼ 1 (the radial direction, say with
coordinate r). Then any smooth curvature invariant, such as
the Kretschmann invariant RαβγδRαβγδ, which is the same as
I1 for a Ricci-flat spacetime, will have a gradient in the
radial direction that becomes null on the horizon (e.g., as
seen in a frame parallely propagated by an infalling
geodesic), so the square of the norm of the gradient of
the Kretschmann invariant (with only one gradient in the
wedge product in this n ¼ 1 case) will be zero on any
spherically symmetric static black hole horizon.
Second, consider a stationary axisymmetric black hole in

four dimensions, which has two commuting Killing vector
fields and cohomogeneity n ¼ 2, such as the Kerr metric.
Then we need the wedge product of two gradients for its
squared norm to be positive at generic locations outside the
black hole but vanishing on the horizon. For a rotating black
hole such as Kerr, one can take the squared norm of the
wedge product dI1 ∧ dI2 as Abdelqader and Lake [9]
effectively did (though originally without realizing explic-
itly that their invariant Q2 is proportional to the squared
norm of this wedge product before we discovered and
pointed out this fact). For a static axisymmetric black hole,
the invariants I2, I4, I6, and I7 vanish, so one could instead
take the squared norm of dI1 ∧ dI3, of dI1 ∧ dI5, of
dI3 ∧ dI5, or of any other pair of independent nonvanishing
scalar polynomial curvature invariants, such as the trace of
higher powers of the curvature tensor like Rαβ

γδRγδ
ϵζRϵζ

αβ.
In these cases with more than one Killing vector that all

commute (so that the dimensionality m of the isometry
group is the same as the number of Killing vectors), the
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squared norm of the wedge product of n independent scalar
polynomial curvature invariants will also vanish at the fixed
points of the Killing vectors other than the one that
becomes null on the horizon, such as on the axes of
axisymmetric spacetimes. In such cases we do not know
how to construct scalar polynomial curvature invariants that
vanish only on the horizon, so that will be left as a
challenge for the future, as well as the challenge as to
whether for specific spacetimes such as Kerr, there is a
scalar polynomial curvature invariant without any covariant
derivatives of the Riemann curvature tensor that vanishes
on the horizon or that vanishes only on the horizon.
Third, consider a distorted static black hole in four

dimensions that has no spatial Killing vector fields on and
outside the horizon, so the local cohomogeneity is n ¼ 3.
Then we need the squared norm of the wedge product of
three gradients of scalar polynomial curvature invariants,
such as dI1 ∧ dI3 ∧ dI5 or wedge products using the
gradients of the traces of higher powers of the curvature
tensor and/or of its covariant derivatives.
There are of course analogous examples in spacetimes of

higher dimension D > 4. If they are static and spherically
symmetric, then for any dimension D ≥ 4, the local
cohomogeneity is n ¼ 1, and the gradient of any scalar
polynomial curvature invariant (such as the Kretschmann
invariant) that has a nonvanishing gradient just outside the
horizon will have its squared norm becoming zero on the
horizon.
The general Kerr-NUT-(A)dSmetric in spacetime dimen-

sion D [10] has local cohomogeneity n ¼ ⌊D=2⌋, the
greatest integer not greater than D=2. That is, the D ¼ 4

case has two commuting Killing vector fields and local
cohomogeneity n ¼ 2 (as the special case of the Kerr metric
does with both the NUT parameter and the cosmological
constant zero). Analogously, the D ¼ 5 case has three
commuting Killing vector fields (one becoming
null on the horizon and two axial ones) and also
n ¼ ⌊5=2⌋ ¼ 2. Then D ¼ 6 and D ¼ 7 have n ¼ 3,
D ¼ 8 and D ¼ 9 have n ¼ 4, D ¼ 10 and D ¼ 11 have
n ¼ 5, etc. In each case the squared norm of the wedge
product of the gradients of n scalar polynomial curvature
invariants will vanish on the horizons (as well as on the
axes surfaces, the fixed points of the axial Killing vector
fields).
One might conjecture that one could take the traces of the

2nd through the ðnþ 1Þth powers of the Riemann curvature
tensor as one choice of n invariants. We have looked at
sample values of the 3 parameters (mass M, rotation
parameter a, and NUT parameter L at fixed cosmological
constant) of the Kerr-NUT-(A)dS metric in spacetime
dimension D ¼ 4 and have found that indeed the square
of the norm of thewedge product of the traces of the 2nd and
3rd powers of the Riemann curvature tensor (the
Kretschmann invariant RαβγδRαβγδ and Rαβ

γδRγδ
ϵζRϵζ

αβ) is
generically nonzero away from the horizons and axes, but

there are curves in the ðr; θÞ plane (hypersurfaces of the full
spacetime that are neither horizons nor axes), where the
square of the norm of the wedge product vanishes.
In particular, when the NUT parameter L is zero, the

Kerr-(A)dS spacetime has a reflection symmetry about the
equatorial plane hypersurface, if one ignores the change in
sign of the volume element given by the totally antisym-
metric Levi-Civita tensor. In this case, gradients of scalar
polynomial curvature invariants that do not involve odd
powers of the Levi-Civita tensor (e.g., not counting I2, I4,
and I7 in D ¼ 4) will lie in the ðn − 1Þ-dimensional local
cohomogeneity part of the hypersurface of reflection
symmetry, so that the wedge product of any n such
gradients will vanish there. When the NUT parameter is
nonzero, there is no reflection symmetry, but generically
there remain distorted hypersurfaces where the wedge
product vanishes.
We found that there are generically other hypersurfaces

away from the horizons and axes on which the wedge
product of n ¼ 2 gradients vanishes. However, we found
that if we took the three scalar polynomial curvature
invariants Sð1Þ ¼ RαβγδRαβγδ, Sð2Þ ¼ Rαβ

γδRγδ
ϵζRϵζ

αβ, and
Sð3Þ ¼ Rαβγδ;ϵRαβγδ;ϵ, then we have three pairs of wedge
products, W12 ¼ dSð1Þ ∧ dSð2Þ, W23 ¼ dSð2Þ ∧ dSð3Þ, and
W31 ¼ dSð3Þ ∧ dSð1Þ, that each vanish on certain curves in
the ðr; θÞ plane and with each pair concurrently vanishing
at certain intersection points in the ðr; θÞ plane, but with no
triple intersections where all three wedge products con-
currently vanish for the sample values of M, a, and L that
we chose. Therefore, it appears that if one takes the sum of
the three squared norms of the wedge products each
multiplied by positive coefficients, then for generic param-
eters this will be nonzero everywhere except at the horizons
and fixed points of the isometry. However, we did find that
for certain choices of the Kerr-NUT-(A)dS parameters,
even this sum of squares vanishes at certain sets of points in
the spacetime away from the stationary horizons and fixed
points of the isometries. We believe this vanishing any-
where could be eliminated for any set of the three
parameters by choosing a sum of six squared norms of
the wedge products of the six pairs of a suitable set of four
gradients of scalar polynomial curvature invariants.
One general procedure for calculating a scalar poly-

nomial curvature invariant IðpÞ, vanishing on a stationary
horizon, which should generically be positive wherever the
Killing vectors span the maximal dimension m of the local
isometry group that includes a timelike direction (so that
one is not at a stationary horizon or fixed point of the
isometry, and so that the n independent directions of the
local cohomogeneity are all spacelike), would be to take a
set of nþ p scalar polynomial curvature invariants fSðiÞg
for i running from 1 to nþ p with sufficiently large p.
(For example, p could be the number of parameters for
a certain class of spacetimes, such as p ¼ D − 1 for the
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Kerr-NUT-(A)dS family of metrics [10] of even dimension
D, or p ¼ D − 2 for odd D, for which there are nþ p
algebraically independent scalar polynomial curvature
invariants.) Then there are ðnþ pÞ!=ðn!p!Þ ways of choos-
ing n gradients to form the squared norm of wedge product
n-form, and one can multiply each by the product of the
squared norms of the remaining gradients and then sum
over the ðnþ pÞ!=ðn!p!Þ choices to get an invariant IðpÞ
that will generically be positive where all the gradients are
spacelike, as they generically would be under the con-
ditions above. Of course, precisely what scalar polynomial
curvature invariant IðpÞ one gets would depend upon which
set of nþ p scalar polynomial curvature invariants fSðiÞg
one chooses, and some special choices could still conceiv-
ably give IðpÞ ¼ 0 even away from stationary horizons and
fixed points of the isometry group.
In conclusion, we have found a way to generalize the

results of Abdelqader and Lake [9] for the Kerr metric to
give ways of constructing scalar polynomial curvature
invariants that vanish on any stationary horizon. These
invariants might be useful for numerically estimating the
location of horizons once a spacetime settles down to
becoming nearly stationary. They may also be interesting
in nonstationary black hole spacetimes for defining
“curvature-invariant quasihorizons,” where the squared
norm of the appropriate wedge product of gradients of
scalar polynomial curvature invariants vanishes, as ana-
logues to apparent horizons, though in the nonstationary
case the locations of the curvature-invariant quasihorizons
may well depend on what scalar polynomial curvature
invariants are chosen for the wedge product of their
gradients.
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