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We study binary spinning black holes to display the long term individual spin dynamics. We perform a
full numerical simulation starting at an initial proper separation of d ≈ 25M between equal mass holes and
evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The
simulation lasts for t ¼ 20 000M and displays a total change in the orientation of the spin of one of the
black holes from an initial alignment with the orbital angular momentum to a complete antialignment after
half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations
of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of
the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle
and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on
the observational consequences for galactic and supermassive binary black holes.

DOI: 10.1103/PhysRevLett.114.141101 PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

Introduction.—Numerical relativity techniques are now
able to directly simulate binary black hole mergers [1–3]. In
particular, one can follow the dynamics of black hole spins
in an inspiral orbit down to the formation of the final
remnant black hole [4]. One of the most striking results of
those studies has been the discovery of very large recoil
velocities [5] acquired by the merger remnant, up to
5000 km=s [6] for hangup configurations.
It has been pointed out [7] that the presence of accreting

matter can align (or counter align) spins with the orbital
angular momentum, thus reducing the recoil velocities to a
few hundred km=s [8]. Recent studies of the tidal effects on
tilted accretion disks around spinning black holes find
almost perfect alignment of the spins with the orbital
angular momentum [9,10] on a shorter time scale than
that of gravitational radiation (for black hole separations
above a thousand gravitational radii).
While those studies have been performed on individual

black holes, we revisit this scenario to study the precession
dynamics of black hole spins in a binary system. In
particular, we are interested in the dynamics of polar
precession of each individual spin. We find a flip-flop
mode with periods shorter than the gravitational radiation
scale and with relatively high probability to occur given
generic (but comparable mass) initial configurations. We
briefly discuss the effects that this flip-flopping spin could
have on the inner accretion disk dynamics and its potential
observational consequences.
Full numerical evolution.—In order to display the long

term dynamics of spinning binary black holes in general
relativity, we start a numerical simulation at a proper
separation d ≈ 25M. We study an equal mass binary with
different spin magnitudes and orientations. In particular, we
choose one of the black holes as slowly spinning with its

spin ~S1 initially aligned with the orbital angular momentum
~L, while the second highly spinning black hole has spin ~S2
lying mostly along the orbital plane, but slightly antialigned
with ~L, such that the total spin ~S exactly lies in the orbital
plane, i.e., ~S · ~L ¼ 0. These choices (See Table I) are for the
sake of simplicity of the analysis, and also provide a
plausible scenario where accretion has proceeded to align
one of the black holes with ~L and led to comparable masses
by preferably accreting onto the initially smaller hole [11].
We also choose the magnitude of the first black hole to be
smaller than that of the second, foreseeing (as discussed
later in this Letter) that the flip-flopping spin neutralizes (at
least partially) the growth of intrinsic spin magnitudes,
S1;2=m2

1;2, by accretion.
We use the TwoPunctures thorn [12], a spectral numeri-

cal code to generate initial “puncture” (no excision of the
horizon) data for the binary black hole simulations. We
evolve these initial data sets using the LAZEV [13]
implementation of the moving puncture approach [2].
For the runs presented here, we use centered, eighth-order
finite differencing in space [14] and a fourth-order Runge
Kutta time integrator. Our code uses the CACTUS/
EINSTEINTOOLKIT [15,16] infrastructure for parallelization.
We use the CARPET [17] mesh refinement driver to provide
a “moving boxes” style of mesh refinement. We locate the
apparent horizons using the AHFINDERDIRECT code [18]
and measure the horizon spin using the isolated horizon
algorithm detailed in [19]. For the computation of the
radiated energy and linear momentum we use the asymp-
totic formulas in [20] which are expressed directly in terms
of the Weyl scalar ψ4.
To complete the full evolution required 2.5 million

service units on 25 to 30 nodes of our local cluster
“Blue Sky” with dual Intel Xeon E5-2680 processors
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nearing 100M of evolution per day. Our evolution is free
and we verify its accuracy by the satisfaction of the
Hamiltonian and momentum constraints. All four L2-norm
quantities remain well below 10−8 until merger. Individual
horizon massesmH

1 andmH
2 are preserved to a level of 2 and

1.4 parts in 105, respectively, until merger. Spins grow
linearly with time until merger by a total increase of
1.5 × 10−4. Thus, the total increase of the intrinsic spin
magnitudes α1;2 ¼ S1;2=m2

1;2 are δα1 ¼ 6 × 10−4 and δα2 ¼
6 × 10−4 from initial data to merger, as described in Table I.
The azimuthal precessional effect and polar flip flop can

be directly seen in the evolution of the spin components of
the black holes represented over a sphere in Fig. 1. The
effect is apparent in the frame of the orbital plane as well as
the fixed initial set of coordinates.
Figure 2 displays the angles that the (slower spinning)

black hole spin ~S1 forms with the precessing orbital angular
momentum ~L or with the fixed ẑ axis as a function of time.
Both start originally aligned and by the time of merger both
display an almost total flip, around 160°. Had we started
the binary further separated apart, this spin would continue
to flip flop between complete alignment and counter
alignment as described in the next section using the

post-Newtonian (PN) approximation. We also compare
our results with the corresponding 3.5PN integration of
the equations of motion and spin evolution [21,22]. We
observe a long initial superposition of the PN and full
numerical precession curves corresponding to the early
15 000M of evolution, when the binary’s separations are
above around 15M. As the merger proceeds and the
evolution becomes more dynamical we observe larger
deviations from each other, with the numerical solution
to general relativity presenting a stronger spin-flip effect.
Figure 3 displays the leading waveform modes for the

strain. In the top panel is the characteristic chirp of the
ðl; mÞ ¼ ð2; 2Þ mode, with an increasing amplitude
slightly modulated at around the orbital frequency due to
the nutation of ~L around the total angular momentum ~J (see
Fig. 1 in Ref. [23]). The lower panel shows the azimuthal
precessional effect of ~L on the amplitude of the (2,1) mode,
showing (in a gauge invariant way) that we evolved for
nearly three precessional cycles (see Ref. [24] for a first
discussion relating this mode to precession in full numeri-
cal simulations).
Table II displays the properties of the final black hole

remnant formed after merger. Notably, the recoil reaches

TABLE I. Initial data parameters and system details. The punctures are located at ~r1 ¼ ðx1; 0; zÞ and
~r2 ¼ ðx2; 0; zÞ, with momenta P ¼ �ð0; P; 0Þ, spins ~S1 ¼ ð0; 0; S1zÞ and ~S2 ¼ ðS2x; 0; S2zÞ, mass parameters
mp, horizon (Christodoulou) masses mH , total Arnowitt-Deser-Misner mass MADM, and dimensionless spins
α ¼ a=mH ¼ S=m2

H . The horizon masses and spins are given after the gauge settles, and the errors in mH and α are
determined by the drift in the quantity during the inspiral. Also provided are the simple proper distance d,
eccentricity at the start of the inspiral ei, and eccentricity ef and the number of orbits N just before merger.

x1=m x2=m z=m P=m d=m
10.739 83 −10.760 16 −0.019 68 0.059 09 25.37
mp

1=m mp
2=m S1z=m2 S2x=m2 S2z=m2

0.485 43 0.306 97 0.05 0.193 65 −0.05
MADM=m JADM=m2 ei ef N
0.994 72 1.270 434 4 0.0322 0.0006 48.5
mH

1 =m δmH
1 =m mH

2 =m δmH
2 =m

0.500 00 0.000 02 0.499 74 0.000 01
α1 δα1 α2 δα2
0.200 03 0.000 56 0.800 88 0.000 66

FIG. 1 (color online). Directional evolutions of the spins and
angular momentum in the initial coordinate frame (right) and in
the noninertial ~L frame (left). Color key: red L̂, green Ĵ, blue Ŝ1.

FIG. 2 (color online). The angle between the spin of
the secondary (smaller spin) black hole ~S1 with respect to the
orbital angular momentum ~L (left) and with respect to the fixed z
axis (right). For comparison we also plot the 3.5PN prediction,
which underestimates the flip of the angle at the latest stages of
evolution (merger).
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1500 km=s, and the orientation of the final spin changes by
only 1.62 deg with respect to the initial direction of the total
angular momentum, as expected for comparable mass
binaries [25,26].
Post-Newtonian spin dynamics.—In order to provide an

analytic understanding of the flip-flop spin mode, we look
at the precession equations for the spins ~S1 and ~S2 with a
mass ratio q ¼ m1=m2 to leading spin-orbit and spin-spin
couplings in the (2PN) post-Newtonian expansion [22]

d~S1
dt

¼ 1

r3

��
2þ 3

2q

�
~L − ~S2 þ

3ð~S0 · n̂Þ
1þ q

n̂

�
× ~S1;

d~S2
dt

¼ 1

r3

��
2þ 3q

2

�
~L − ~S1 þ

3qð~S0 · n̂Þ
1þ q

n̂

�
× ~S2; ð1Þ

where ~n ¼ ~r1 − ~r2 and

~S0 ¼
�
1þ 1

q

�
~S1 þ ð1þ qÞ~S2: ð2Þ

For more details see the reviews in Refs. [27,28].
For direct connection with the full numerical simulation

above we will consider here the equal mass case, i.e., q ¼ 1

and for the sake of simplicity, the conservative 2PN spin
dynamics at fixed r. We next consider a generic configu-
ration of binary black holes with arbitrary spins ~S1 and ~S2 at
an angle β with respect to each other and adding up to the
vector ~S. For definiteness, ~S1 is the spin of the black hole 1
at an angle γ with respect to ~S as shown in Fig. 4 and ~S2 is
the spin of the black hole 2 identified with the larger spin
magnitude S2.
From Eq. (1) the magnitude of the individual spins S1

and S2 are conserved as well as the magnitude of its sum, S.
(This has been observed to be approximately true in full
nonlinear simulations of binary black holes solving general
relativity field equations numerically [29].) It follows that
the following quantities are conserved:

~S · ~S ¼ S2 ¼ S21 þ S22 þ 2S1S2 cos β ¼ const; ð3Þ

~S · ~S1 ¼ SS1 cos γ ¼ S21 þ S2S1 cos β ¼ const: ð4Þ

In turn, this leads to the conservation of β and γ during the
evolution of the binary. In particular, we find that ~S1
oscillates around ~S between polar angles γ and −γ (when it
is both coplanar to ~S and ~L). We call this the flip-flop angle

θff ¼ θmax − θmin ¼ 2γ; ð5Þ

where

FIG. 3 (color online). The real part of the waveform strain for
the modes ðl; mÞ ¼ ð2; 2Þ and ðl; mÞ ¼ ð2; 1Þ. While the former
(top) gives the leading chirping amplitude, the latter (bottom)
clearly displays the precession effect, completing nearly three
cycles during the t ¼ 20 000M of the simulation.

TABLE II. Remnant properties and recoil velocity. The final mass and spin are measured from the horizon, and the
recoil velocity is calculated from the gravitational waveforms. The error in the mass and spin is determined by the
drift in those quantities after the remnant settles down. The error in the recoil velocity is the difference between first
and second order polynomial extrapolation to infinity.

Mrem=m jαremj Vrecoil½km=s�
0.949 04� 0.000 00 0.703 77� 0.000 02 1508.49� 16.08
αxrem αyrem αzrem
0.108 15� 0.000 03 −0.019 86� 0.000 00 0.695 13� 0.000 02

θ

β

L

S

S2

S1

γ

FIG. 4 (color online). Spin configurations ~S1 and ~S2 relative to

the orbital angular momentum ~L. Here ~S ¼ ~S1 þ ~S2.
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cos γ ¼ S1 þ S2 cos βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ 2S1S2 cos β

p ¼ S2 þ S21 − S22
2SS1

: ð6Þ

By decomposing the spin evolution equations [Eq. (1)]
along ~L and perpendicular to it, in the fashion of [26],

Sec. IVA, we obtain equations of the form dð~Si · L̂Þ=dt ¼
Ωff

~Si · L̂þ � � � for i ¼ 1, 2 and analogously for the
perpendicular component of Si giving Ωp. From where
we can read off the average polar and azimuthal oscillations

frequencies of the spin ~S1 (see also [30])

Ωff ¼ 3
S
r3

�
1 −

2~S · L̂

M3=2r1=2

�
; ð7Þ

Ωp ¼ 7L
2r3

þ 2

r3
ð~S · L̂Þ; ð8Þ

which we identify with the flip-flop and precession
frequencies, respectively.
Note that the black hole 2 also oscillates at this Ωff

frequency, but with a smaller flip-flop angle (since S2 > S1)
given by 2ðβ − γÞ where

cosðβ − γÞ ¼ S2 þ S22 − S21
2SS2

: ð9Þ

Thus, both spins, ~S1 and ~S2, oscillate around ~S which in
turn precess around ~L.
This oscillation of the spins represents a genuine spin flip

in the sense that it is the same object that completely
changes its spin orientation. This is different from the
simple case where the final remnant spin has flipped
direction when compared to the spin of one of the
individual orbiting black holes [31].
Discussion.—In the scenario of binary black holes

carrying individual thin accretion disks (and possibly a
common circumbinary disk), spins changing their orienta-
tion can generate dramatic dynamical effects on the
accreting matter around them. For definiteness, we focus
on the black hole with spin ~S1 undergoing direction
changes, which when viewed in the orbital frame, resemble
the peeling of an orange (see Fig. 1). Because of the
relatively short time scale of flip flop at close separations,
the accreting matter increases the black hole spin during
half the flip-flop period, but decreases it during the other
half. On the other hand, mass is always added to the black
holes during both the up and down states. The resulting net
effect is to lower the intrinsic spin magnitude, S1=m2

1.
From Eqs. (6) and (7), which represent a good approxi-

mation for well-separated binaries (r ≫ 100M), requiring a
flip-flop angle of 180° implies that γ ¼ π=2 and
Ωff ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22 − S21

p
=r3. For a maximally spinning hole 2

and a hole 1 with a relatively small spin at 1000M of
separation, we obtain a flip-flop period

Tff ¼ 2π

Ωff
¼ 32; 700 yr

�
r

1000M

�
3
�

M
108M⊙

�
; ð10Þ

which is shorter (by a factor of 40) than the gravitational
radiation periods reported in [9] used to compare with the
accretion-driven alignment mechanisms [32]. We thus
conclude that such alignment processes might be less
effective than expected when the flip flop of spins is taken
into account.
These flip-flop configurations might be very effective at

disrupting the inner accretion disk dynamics and at
circumventing the spin alignment (and growth) process
by accretion, thus leading to important observational
consequences. For instance, the change of the location
of the internal rim of the disk due to the flip of the spin will
change the high frequencies end of fluctuations and the
electromagnetic spectrum due to changes in the efficiency
of the conversion of the accreting flow, i.e., proportional
to the energy of at the innermost-stable-circular-orbit
EISCOð�aÞ. Flip-flopping spins might also generate turbu-
lent accretion by changing the stirring direction, leading to
an increase or decrease of the radiation (see [33]). These
examples provide rough estimates of the disrupting effects
of a flip-flopping spin and a more accurate evaluation
requires a full numerical magnetohydrodynamic simulation
of such binary black hole configurations. Our full numeri-
cal run proves that, although demanding, these simulations
are currently possible and they can be performed adding a
magnetohydrodynamic description of the matter on a
dynamical binary black hole background [34].
The change in the spin orientation at the latest stage of

the merger could be followed through detailed observation
of the gas jets in X-shaped radio galaxies [35]. The time
scale for this phenomena, for instance, for the ∼25 000M
semiperiod we observe for the flip flop in our full numerical
simulation, corresponds to 1.2 sec for 10M⊙ binaries and
142 days for 108M⊙ binaries. Note that according to Eq. (7)
frequencies can be even higher if the black hole 2 would be
closer to maximally spinning.
To appreciate the astrophysical relevance of this phe-

nomenon it is important to determine the likelihood of these
flip-flop angles out of all possible generic binary black hole
merger configurations. We hence consider binaries with
different mass ratios, q, and initial random spins α1,
cosðθ1Þ, α2, cosðθ2Þ, with ϕ1 − ϕ2 ¼ 0, π (this last piece
is due to the resonances studied in [36–38]). We evolve
these configurations from separations r ¼ 100M down to
r ¼ 5M, representing merger, using the 3.5 post-
Newtonian approximation. The results of 2 922 656 sim-
ulations per q displaying the probability of a flip-flop angle
larger than x are summarized in Fig. 5. The spin-flip angles
remain large for comparable masses and this phenomena
may also occur, to a lesser extent, in black hole—neutron
stars binaries. Note that accretion onto black hole binaries
tends to bring the mass ratio towards 1 because the smaller
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hole is further away from the center of mass of the system
and can sweep out more mass from the internal parts of the
circumbinary accretion disk [11]. The flip-flop frequency
for large binary separations and q ≠ 1 is given by
ΩffðqÞ≈ð3=2Þð1−qÞ=ð1þqÞðM=rÞ5=2. A thorough study
of the unequal mass binary regime is being completed and
will be published by the authors elsewhere.
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