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One of the major experimental achievements in the past decades is the ability to control quantum systems
to high levels of precision. To quantify the level of control we need to characterize the dynamical evolution.
Full characterization via quantum process tomography is impractical and often unnecessary. For most
practical purposes, it is enough to estimate more general quantities such as the average fidelity. Here we use
a unitary 2-design and twirling protocol for efficiently estimating the average fidelity of Clifford gates, to
certify a 7-qubit entangling gate in a nuclear magnetic resonance quantum processor. Compared with more
than 108 experiments required by full process tomography, we conducted 1656 experiments to satisfy a
statistical confidence level of 99%. The average fidelity of this Clifford gate in experiment is 55.1%, and
rises to at least 87.5% if the signal’s decay due to decoherence is taken into account. The entire protocol of
certifying Clifford gates is efficient and scalable, and can easily be extended to any general quantum
information processor with minor modifications.
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Introduction.—Benchmarking protocols for characteriz-
ing the level of coherent control are fundamental in
evaluating potential quantum information processing
(QIP) devices. They provide an objective comparison of
quantum control capabilities between diverse QIP devices,
and also indicate the prospects of a given platform
with respect to fault-tolerant quantum computation [1].
Quantum process tomography (QPT) [2,3], the standard
method for completely characterizing a quantum channel,
requires a number of measurements that scale exponentially
with the number of qubits n (≈24n), making it impractical
even in relatively small systems. To date, QPT has been
applied to at most 3-qubit systems in experiment [4–11].
Fortunately, full characterization is not necessary for many
practical purposes and more accessible properties of the
gates are sufficient. To benchmark a gate it is enough to
estimate the distance between the implemented channel and
the ideal gate. A standard figure of merit for benchmarking
the level of control is the average fidelity, and several
methods have been proposed to evaluate it in an efficient
manner. These include randomized benchmarking [12–14],
twirling [15–17], and Monte Carlo estimations [18,19],
each with its own restrictions and drawbacks. Here, in order
to benchmark our coherent controls on a 7-qubit nuclear
magnetic resonance (NMR) system, we adopted the twirling

protocol [17] to estimate the average fidelity of an important
Clifford gate in QIP. The gate of interest generates maximal
coherence from single coherence with the aid of local
rotations, and is of critical importance to many QIP tasks
such as the creation of a cat state in multiqubit systems. The
estimation method is scalable and independent of the number
of qubits, and is straightforward to implement in other
quantum information processing architectures.
For the twirling protocol we conducted only 1656

experiments compared with about 2.7 × 108 experiments
required for fully characterizing the 7-qubit gate via QPT.
The average fidelity of the certified gate is 55.1% before
accounting for decoherence and rises above 87.5% by
factoring out the decoherence effect. Moreover, the NMR
spectra based on the application of this Clifford gate are in
excellent agreement with the simulation results.
Theory.—Let U be a superoperator representation of the

Clifford gateU that we want to implement and ~U ¼ Λ∘U be
the superoperator representation of the real evolution in the
laboratory experiment. We call Λ the noise superoperator
and our task is to estimate its average fidelity with respect to
the identity. The method described below is based on
twirling [20] and the construction of a unitary 2-design [16].
Given a fiducial pure state jψi, the average fidelity

(with respect to the identity) is the quantum fidelity
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hψ jΛðjψihψ jÞjψi averaged over all pure states Vjψi, where
V is an arbitrary unitary transformation. Averaging over the
entire Hilbert space can be done using the Haar measure
dμðVÞ [12], so

F̄ðΛÞ ¼
Z

dμðVUÞhψ jV†
U∘Λ∘VUðjψihψ jÞjψi: ð1Þ

Here, V is the superoperator representation of a unitary V
and VU ¼ U∘V. In this notation it is easy to see that the
average fidelity depends only on Λ.
Using a unitary 2-design based on the Clifford group, it

is possible to simplify Eq. (1) to

F̄ðΛÞ ¼ 1

jCnj
X
Ci∈Cn

hψ jC†i ∘Λ∘Ciðjψihψ jÞjψi; ð2Þ

where Cn is the n-qubit Clifford group Cn. The average
fidelity is therefore equivalent to the fidelity of the average
channel

Λ̄Cn ¼
1

jCnj
X
Ci∈C1

C†i ∘Λ∘Ci: ð3Þ

This is a depolarizing channel Λ̄CnðρÞ ¼ P0ρþ ½1 − P0�I
with P0 the probability for no error. The average fidelity of
Eq. (2) is therefore a function of the parameter P0.
To estimate P0 in a scalable way we can make use of an

identification involving the C⊗n
1 Π-twirled channel. This is

the channel Λ twirled over the composition of the n-fold
tensor product of the 1-qubit Clifford group C⊗n

1 and the
permutation group Π

Λ̄C⊗n
1

Π ¼ 1

jC⊗n
1 Πj

X
Ci∈C⊗n

1
Π

C†i ∘Λ∘Ci: ð4Þ

It has a Pauli form

Λ̄C⊗n
1

ΠðρÞ ¼
Xn
w¼0

PrðwÞ
�

1

3wðnwÞ
X3wðnwÞ
i¼1

Pi;wρPi;w

�
; ð5Þ

where PrðwÞ is the probability that a Pauli error of weight w
occurs. The identification P0 ¼ Prð0Þ [21] gives

F̄ðΛÞ ¼ 2n Prð0Þ þ 1

2n þ 1
: ð6Þ

The task of finding the average fidelity of the noisy
channel Λ is now reduced to finding Pr(0), i.e., the
probability that the twirled channel Λ̄C⊗n

1
Π does not cause

an error.
To obtain Prð0Þ, we can start from the input state j0i⊗n,

apply the C⊗n
1 twirled channel, and measure the output state

in the n-bit string basis [15]. Equivalently, for an ensemble

system we can replace j0i⊗n by n distinct input states
ρw ¼ Z⊗wI⊗n−w where Z represents the Pauli matrix σz,
followed by a permutation operation Πn, and measure
accordingly as shown in Fig. 1(a).
From an experimental perspective this is still a difficult

task. Ideally we want to make as few assumptions as
possible about the ability to perform arbitrary Clifford
operations since in practice we can only implement
~Uc ¼ Λ∘Uc. Moussa et al. [17] modified the original
twirling protocol in the following way. By inserting the
identity Uc∘U†

c appropriately, the circuit depicted in the
upper panel of Fig. 1(a) can be transformed to the lower
one. The input state ρi ¼ Ci∘ΠnðρwÞ is the input Pauli
operator and the measurementMρi;Uc

¼ UcðρiÞ (that can be
calculated efficiently [24]), is also a Pauli operator.
By implementing the circuit in the lower panel of

Fig. 1(a), the probability of no error is [25]

Prð0Þ ¼ 1

4n

�
1þ 1

2n

X4n−1
i¼1

Trð ~UcðρiÞMρi;Uc
Þ
�
: ð7Þ

Then substituting Eq. (7) in Eq. (6) will yield the average
fidelity of the faulty Clifford gate ~Uc.
Note that the above twirling protocol is limited to the

certification of Clifford gates. For a general unitary gate, it
is often impractical to realize the measurement operator
Mρi;U ¼ UρiU†, whereas for a Clifford gate it can be
decomposed efficiently [24]. It is possible to develop
fault-tolerant quantum computing where Clifford gates
and magic state preparation are the basic building blocks
[26,27]. In these architectures they are the only gates that
need to be benchmarked [28]. For example, the encoding
operation of the 3-qubit quantum error correction code is a
Clifford gate comprising two controlled-NOT (CNOT)
gates and a single qubit Hadamard gate, and has been
certified in a 3-qubit solid-state NMR system [17].
In spite of the simplification of the aforementioned

way to estimate the average fidelity of Clifford gates,
the complexity remains exponential as 4n − 1 distinct Pauli
states need to be prepared. Actually, measuring all of the
expectation values is unnecessary if one only desires to
approximate the average with a given confidence level and
confidence interval [15]. Hoeffding’s inequality [29] states
that if x1;…; xm are independent realizations of a random
variable x, confined to the interval ½a; b� and with statistical
mean EðxÞ ¼ μ, then for any δ > 0 we have

Probðjx̄ − μj > δÞ ≤ 2e−2δ
2m=ðb−aÞ2 ; ð8Þ

where x̄ ¼ ð1=mÞPm
i¼1 xi is the estimator of the exact

mean μ, and ProbðϵÞ denotes the probability of event ϵ∶jx̄ −
μj > δ which we want to minimize. Explicitly, Hoeffding’s
inequality provides an upper bound on the probability that
the estimated mean is off by a value greater than δ.
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The confidence level and confidence interval are
1 − ProbðϵÞ and [−δ; δ], respectively.
When μ is the average fidelity we have a ¼ 0 and b ¼ 1.

Hence, for a given ProbðϵÞ and δ, the number of experi-
ments calculated by taking the log of Eq. (8) is

m ≤
ln (2=ProbðϵÞ)

2δ2
: ð9Þ

Note that the number of experiments is independent of the
number of qubits n, once the desired ProbðϵÞ and δ have
been given. This result reveals that the estimation of the
average fidelity of Clifford gates via the twirling protocol is
efficient and scalable. For instance, given a 99% confidence
level, i.e., ProbðϵÞ ¼ 1% and δ ¼ 0.04, the total number of
experiments is 1656, independent of n.
Experiment.—In the experiment we chose Uc to be the

Cifford gate used to generate maximal (7-qubit) coherence
from single (1-qubit) coherence, up to single-qubit gates.

It evolves ZI⊗n−1 to Z⊗n and is the basic encoding process
for the pseudo-pure state (PPS) preparation method of
Ref. [22] shown in Fig. 1(c). It also plays a role in the
creation of cat states. The gate can be decomposed into a
sequence of elementary Clifford gates of the type

e−iðπ=4ÞXie−iðπ=4ÞZiZje−iðπ=4ÞYi ; ð10Þ
that increase the order of coherence by evolving Zi to ZiZj.
Implementing Uc in experiment is nontrivial as it requires
2ðn − 1Þ single qubit operations and ðn − 1Þ 2-qubit
operations.
Our 7-qubit NMR processor is the per-13C-labeled

dichlorocyclobutanone derivative [30] shown in Fig. 1(b)
dissolved in d6-acetone. The carbon nuclei labeled C1 to C7

denote the seven qubits. Details of the molecular structure
can be found in the Supplemental Material [23]. 1H nuclei
were decoupled by the Waltz-16 sequence throughout all

Cl

Cl

C1

C2

C4C5

C6 C7

C3

H

H4

H2

H3

H1

H5

OO

O

S

(a)

(b)

(c)

(d)
(e)

Encoding CS Decoding

FIG. 1 (color online). (a) Twirling protocols for quantum memories (top) and Clifford gates (bottom). Top: ρw ¼ Z⊗wI⊗n−w represents
n distinct Pauli states, Ci is a 1-qubit Clifford operation in C⊗n

1 , and Πn is a permutation operation. Bottom: ρi ¼ CiΠnρwΠ†
nC†i spreads

over the entire Pauli group Pn, ~Uc ¼ Uc∘Λ is the noisy Clifford gate, and Mρi ;Uc
¼ UcρiU

†
c. (b) Molecular structure of Dichloro-

cyclobutanone, where C1 to C7 form a 7-qubit system. (c) Pulse sequence for the creation of labeled PPS via the method in Ref. [22]. It
consists of three parts: encoding, coherence selection (CS), and decoding. Uc, realized by a 80 ms GRAPE pulse (compare with
0.5s < T2 < 2s for all seven spins [23]), is the Clifford gate to be certified. The instantaneous states are (unnormalized) ρ1 ¼ I⊗6 ⊗ Z,
ρ2 ¼ Z⊗7, ρ3 ¼ j0ih0j⊗7 þ j1ih1j⊗7, and ρ4 ¼ j0ih0j⊗6 ⊗ Z7, respectively. (d) Experimental result for the certification of Uc. k ¼
3wð7wÞ is the number of Pauli operators for weight w, while kw is the number of experiments via the sampling; t is the typical time for the
input Pauli state preparation, and Fi is the calibration to capture the errors in preparation and measurement; Fe is the experimental result
of the probability of no error, and Ed is the numerically simulated signal attenuation (in terms of percentage) due to decoherence. Fd;c is
the same quantity as Fe but without decoherence effect Ed. (e) Relationship among the experimental remaining signals (blue),
decoherence errors (orange), and gate imperfections (gray) for different w.
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experiments. The internal Hamiltonian of this system can
be described as

Hint ¼
X7
j¼1

πνjZj þ
X7

j<k;¼1

π

2
JjkZjZk; ð11Þ

where νj is the resonance frequency of the jth spin and Jjk
is the scalar coupling strength between spins j and k. All
experiments were conducted on a Bruker DRX 700 MHz
spectrometer at room temperature.
The entire procedure to estimate the average fidelity of

Uc can be divided into four parts, as follows:
(i) Sampling. To achieve a confidence level 99% and

precision δ ¼ 0.04, we computed that the required number
of experiments is 1656 via Eq. (9). Then we randomly
sampled 1656 distinct Pauli states out of the entire 7-qubit
Pauli group, which has in total 47 − 1 ¼ 16 383 elements.
We distributed all 1656 input Pauli states to seven sub-
groups according to their Pauli weights w ¼ 1 to w ¼ 7.
The primary reason for this distribution is that a quantum
gate such as Uc here is usually more prone to error when
applied to higher weight Pauli states. Additionally, the
preparations of input Pauli states with different weights w
are distinct.
The sampling result is shown in Fig. 1(d), where the

number of sampled experiments kw for weight w is around
one tenth of the total number k ¼ 3wðnwÞ.
(ii) Preparation and calibration. For the creation of every

input Pauli state, we employed an efficient sequence
compiling program [31] to produce the corresponding
pulse sequence. All pulses in the preparation sequences
are selective and generated by Gaussian shapes. We then
compared the state preparation results with the thermal
equilibrium state as a calibration of the certification
procedure, aiming to capture the errors in preparation
and measurements. The typical duration t for preparing a
weight w Pauli state and the related calibration results Fi
are both listed in Fig. 1(d).
(iii) Evolution. The target operation Uc was optimized by

a Gradient Ascent Pulse Engineering (GRAPE) pulse [32].
Traditional shaped pulses in NMR are usually optimized
for rotations of single qubits, and are not effective at
suppressing undesired coupling evolution during the pulse
in a multiqubit setting. We utilize the GRAPE algorithm to
construct Uc, and find that this ensures Uc is a Clifford gate
to a very good approximation. The GRAPE pulse of Uc was
obtained with the pulse width chosen as 80 ms and a
simulated fidelity of 0.99. A special calibration method was
used in the experiment to ensure that the pulse acting on the
spins was a very close approximation to the simulated
(theoretical) pulse [5].
(iv) Measurement. After applying the GRAPE pulse of

Uc to each input Pauli state in the experiment, we measured
the corresponding output Pauli state by local readout
pulses, and recorded the ratio of the remaining signal to

that of the reference input state. Next, we averaged the
results with respect to different weights w, as shown by Fe
in Fig. 1(d). It is expected that the ratio will decrease as w
increases, since higher coherences are less robust to the
decoherence occurring during Uc.
The probability of no error [Fe in Fig. 1(d)] is

Prð0Þ ≈ 54.7%. The average fidelity of Uc via Eq. (6) is
then F̄ðΛÞ ≈ 55.1%. It is possible to decompose Uc into
twelve 1-qubit gates and six 2-qubit gates [33]. To quantify
the decoherence contribution during Uc, we followed the
approach of phase damping [34] to simulate the dynamical
process step by step. This gives a conservative estimate
of decoherence due to T2 processes. The average signal
attenuation due to decoherence is shown by Ed in
Fig. 1(d). Under the assumption that the decoherence error
can be factorized, the probability of no error Prð0Þ after
theoretically removing the decoherence is 87.4%, which
means the average fidelity is 87.5%. In the equivalent
implementation using elementary gates, the average error
per gate would then be < 1%. The remaining errors are
mainly attributed to imperfection in the design and imple-
mentation of the GRAPE pulse. Figure 1(e) shows the
relationship between the raw experimental results,
decoherence effects, and gate imperfections for each w.
Figure 2(a) shows the spectrum of Z⊗7 after UcðZ7Þ under

the observation of C2. Comparing the simulated and
experimental spectra gives a qualitative indication of the
level of coherent control achieved in this 7-qubit system. For
another comparison we followed Uc by a set of operations to
extract the PPS as in Fig. 1(c). The PPS spectrum by
observing the labeled spin C7 is shown in Fig. 2(b).
Conclusion.—We estimated the average fidelity of a

nontrivial 7-qubit Clifford gate using a twirling protocol
together with a random sampling method. This is the largest
gate characterization reported in an experiment to date
and is currently the only average fidelity benchmark for

(a)

(b)

FIG. 2 (color online). (a) NMR spectrum of Z⊗7 under the
observation of C2. The simulated (red) spectrum is rescaled for
line shape comparison with the experimental (blue) one. (b) PPS
spectrum (blue) based on the network in Fig. 1(c), where Uc was
employed as the encoding process. The spectrum of the thermal
equilibrium state (black) is also shown.
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> 3-qubit gates. The experimental spectra demonstrate
reliable coherent control of this 7-qubit system while our
benchmarking protocol gives an average gate fidelity of
55.1% before accounting for decoherence, and 87.5% after
theoretically removing the contribution of decoherence. An
important feature of the protocol is the relatively small
number of experiments required: 1656 (< 211) compared to
2.7 × 108ð≈228Þ for process tomography.
We believe the level of control demonstrated here is state

of the art for a quantum system above 4 qubits. Lack of
average fidelity measurements for 7-qubit gates in other
systems prevents direct comparison. A rough comparison
can be made using the decomposition into a circuit of 18
one- and two-qubit gates. An overall average fidelity of
55.1% requires each gate to have an average fidelity of
at least 96% (99% after accounting for decoherence) on a
7-qubit quantum processor. The best average fidelity
reported in NMR is 86% (99% after accounting for
decoherence) for a 3-qubit gate and 99.5% for a 2-qubit
gate, both on a 3-qubit sample [14,17]. A comparable system
is a 5 Xmon qubit superconducting circuit with bench-
marked average fidelities of 99.0%–99.4% for nearest
neighbor 2-qubit gates [35]. It is likely that state-of-the-
art ion traps may achieve similar average fidelities [36]. With
further developments in experimental quantum information
processing we expect that these and other systems can be
compared directly with the 7-qubit NMR system using the
protocol outlined in this Letter.

We thank S. Y. Hou, O. Moussa, H. Park, and G. R. Feng
for helpful comments and discussions. This work is
supported by Industry Canada, NSERC, and CIFAR.
H. L. and G. L. L. are supported by National Natural
Science Foundation of China under Grants No. 11175094
and No. 91221205, the National Basic Research Program
of China under Grant No. 2011CB9216002.

*laflamme@iqc.ca
[1] J. Preskill, Proc. R. Soc. A 454, 385 (1998).
[2] I. L. Chuang and M. A. Nielsen, J. Mod. Opt. 44, 2455

(1997).
[3] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78,

390 (1997).
[4] A. M. Childs, I. L. Chuang, and D.W. Leung, Phys. Rev. A

64, 012314 (2001).
[5] Y. S. Weinstein, T. F. Havel, J. Emerson, N. Boulant, M.

Saraceno, S. Lloyd, and D. G. Cory, J. Chem. Phys. 121,
6117 (2004).

[6] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K.
Langford, T. C. Ralph, and A. G. White, Phys. Rev. Lett. 93,
080502 (2004).

[7] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt,
T. K. Körber, W. Hänsel, H. Häffner, C. F. Roos, and
R. Blatt, Phys. Rev. Lett. 97, 220407 (2006).

[8] J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S.
Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M.

Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 102, 090502
(2009).

[9] R. C. Bialczak et al., Nat. Phys. 6, 409 (2010).
[10] D. Kim et al., Nature (London) 511, 70 (2014).
[11] G. Feng, G. Xu, and G. Long, Phys. Rev. Lett. 110, 190501

(2013).
[12] J. Emerson, R. Alicki, and K. Zyczkowski, J. Opt. B 7, S347

(2005).
[13] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B.

Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin,
and D. J. Wineland, Phys. Rev. A 77, 012307 (2008).

[14] C. A. Ryan, M. Laforest, and R. Laflamme, New J. Phys.
11, 013034 (2009).

[15] J. Emerson, M. P. da Silva, O. Moussa, C. A. Ryan, M.
Laforest, J. Baugh, D. G. Cory, and R. Laflamme, Science
317, 1893 (2007).

[16] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Phys. Rev.
A 80, 012304 (2009).

[17] O. Moussa, M. P. da Silva, C. A. Ryan, and R. Laflamme,
Phys. Rev. Lett. 109, 070504 (2012).

[18] S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501
(2011).

[19] M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Phys.
Rev. Lett. 107, 210404 (2011).

[20] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[21] M. P. da Silva, Ph.D. thesis, University of Waterloo, 2008.
[22] E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng,

Nature (London) 404, 368 (2000).
[23] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.114.140505 for a de-
tailed description of both theory and experiment.

[24] S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328
(2004).

[25] D. Trottier, Master thesis, University of Waterloo, 2013.
[26] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[27] A. M. Souza, J. Zhang, C. A. Ryan, and R. Laflamme, Nat.

Commun. 2, 169 (2011).
[28] Note that benchmarking of measurements and preparation is

unavoidable.
[29] S. Venkatesh, The Theory of Probability: Explorations and

Applications (Cambridge University Press, Cambridge,
England, 2012).

[30] J. W. Johnson, D. P. Evanoff, M. E. Savard, G. Lange, T. R.
Ramadhar, A. Assoud, N. J. Taylor, and G. I. Dmitrienko, J.
Org. Chem. 73, 6970 (2008).

[31] C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, and R.
Laflamme, Phys. Rev. A 78, 012328 (2008).

[32] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

[33] The pulse was optimized using GRAPE, so the operation Uc
is not implemented by a sequence of 1- and 2-qubit
elementary gates. However, the initial guess for the GRAPE
pulse was generated from an elementary gate sequence.

[34] L.M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
M. H. Sherwood, and I. L. Chuang, Nature (London) 414,
883 (2001).

[35] R. Barends et al., Nature (London) 508, 500 (2014).
[36] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Nat.

Phys. 4, 463 (2008).

PRL 114, 140505 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

10 APRIL 2015

140505-5

http://dx.doi.org/10.1098/rspa.1998.0167
http://dx.doi.org/10.1080/09500349708231894
http://dx.doi.org/10.1080/09500349708231894
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevA.64.012314
http://dx.doi.org/10.1103/PhysRevA.64.012314
http://dx.doi.org/10.1063/1.1785151
http://dx.doi.org/10.1063/1.1785151
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1103/PhysRevLett.93.080502
http://dx.doi.org/10.1103/PhysRevLett.97.220407
http://dx.doi.org/10.1103/PhysRevLett.102.090502
http://dx.doi.org/10.1103/PhysRevLett.102.090502
http://dx.doi.org/10.1038/nphys1639
http://dx.doi.org/10.1038/nature13407
http://dx.doi.org/10.1103/PhysRevLett.110.190501
http://dx.doi.org/10.1103/PhysRevLett.110.190501
http://dx.doi.org/10.1088/1464-4266/7/10/021
http://dx.doi.org/10.1088/1464-4266/7/10/021
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1088/1367-2630/11/1/013034
http://dx.doi.org/10.1088/1367-2630/11/1/013034
http://dx.doi.org/10.1126/science.1145699
http://dx.doi.org/10.1126/science.1145699
http://dx.doi.org/10.1103/PhysRevA.80.012304
http://dx.doi.org/10.1103/PhysRevA.80.012304
http://dx.doi.org/10.1103/PhysRevLett.109.070504
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1038/35006012
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.140505
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.140505
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.140505
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.140505
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.140505
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.140505
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.140505
http://dx.doi.org/10.1103/PhysRevA.70.052328
http://dx.doi.org/10.1103/PhysRevA.70.052328
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1038/ncomms1166
http://dx.doi.org/10.1038/ncomms1166
http://dx.doi.org/10.1021/jo801274m
http://dx.doi.org/10.1021/jo801274m
http://dx.doi.org/10.1103/PhysRevA.78.012328
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/414883a
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nphys961
http://dx.doi.org/10.1038/nphys961

