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The fundamental principle of artificial intelligence is the ability of machines to learn from previous
experience and do future work accordingly. In the age of big data, classical learning machines often require
huge computational resources in many practical cases. Quantum machine learning algorithms, on the other
hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here,
we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-
qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes
handwritten characters from a set with two candidates. Because of the wide spread importance of artificial
intelligence and its tremendous consumption of computational resources, quantum speedup would be
extremely attractive against the challenges of big data.
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As an approach to artificial intelligence (AI), machine
learning algorithms have the ability to optimize their future
performance by learning from existing samples [1]. When
human beings are unable to give explicitly programmed
instructions in many practical problems, the machines
could reveal the hidden patterns in large data sets and
become “intelligent.” There are two major types of machine
learning, supervised and unsupervised, differing from
whether the training data are labeled in advance. Among
the supervised machines, the support vector machine
(SVM) is a popular learning machine which learns from
training data and classifies vectors in a feature space into
one of two subgroups [2]. The machine first converts the
training data to feature space and find the optimal hyper-
plane which can divide the two subgroups. Then the
machine could use the hyperplane to classify a new
unknown instance which subgroup it belongs. The com-
putational complexity of SVM in time is O½polyðNMÞ�,
i.e., polynomial in NM, where N is the number of
dimensions of the feature space and M is the number of
training samples. To achieve desirable performance, the
machines often require a huge amount of storage and
computational resources.
Quantum algorithms may be utilized to reduce resource

costs, as they have provided impressive speedup over their
classical counterparts in many fields [3–6]. In the area of
AI, Rebentrost et al. recently reported a quantum algorithm
for SVM (QSVM) [7] based on recently developed tech-
niques [8–10], which can achieve O½log ðNMÞ� perfor-
mance in both training and classifying processes. The
exponential speedup is achieved by utilizing a quantum
circuit to calculate the inner products of the vectors in
parallel [9] and to convert the SVM training to an

approximate least-squares problem which is subsequently
solved by the quantum matrix inversion algorithm [10,11].
Here, we report an experimental implementation of the

QSVM algorithm. To be more comprehensive, we apply the
algorithm to a popular problem, the optical character
recognition (OCR) problem [12], to classify handwritten
characters in a candidate set. Since a realistic OCR problem
in the QSVM needs more qubits than those that can be
implemented in the state-of-art quantum computing tech-
nologies, here, for the purpose of demonstration, we restrict
the problem to the minimal case where only two characters
(“6” and “9”) are in the candidate set and only two features
(horizontal and vertical ratios, which are defined in the
following) are considered in the problem. This allows us to
demonstrate this quantum artificial intelligence algorithm
on a four-qubit nuclear spin quantum processor at ambient
conditions.
A usual OCR process often contains four stages [12]:

(i) preprocessing the image, (ii) dividing the sentence
image into character images, (iii) extracting the features
of the image, and (iv) classifying the character image. Here,
the machine is only designed to recognize a single character
image; thus, the second stage for segmentation is not
necessary. The quantum SVM here works as follows: first,
the machine is trained with the printed images of the
standard fonts of the two characters 6 and 9 [Fig. 1(a)], and
then, a series of the handwritten images of character 6 or 9
[Fig. 1(b)] are provided to the machine for recognition
(classification), i.e., to determine which character group it
belongs. It is worth noting that the machine actually works
with a vector formed by the features of each image, and
before being fed to the machine, every image should be
preprocessed, such as resizing the pixels and calculating the
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features. In our case, the feature values are chosen as the
vertical ratio and the horizontal ratio, calculated from the
pixels in the left (upper) half over the right (lower) half. A
linear conversion and a normalization are applied to the
feature vectors to make them suitable for our quantum
processor with only four qubits (See Ref. [13] for details).
After preprocessing, the two printed images of the standard
fonts are represented by ~x1 ¼ ð0.987; 0.159Þ for character 6
and ~x2 ¼ ð0.354; 0.935Þ for character 9. The vectors of
handwritten characters, which have the feature of clustering
and are linearly separable, are also provided in Fig. 1.
In this Letter, we will define the images of the character 6

as “positive class” and that of 9 as “negative class,” denoted
by the variable yð¼ �1Þ. The task for a SVM algorithm is
to classify a new vector ~x0 into one of these two classes, by
learning from the training samples which are labeled
previously. In the training process, the machine finds a
maximum-margin hyperplane which separates the training
samples by their classes. Mathematically, we construct
the hyperplane with ~w · ~xþ b ¼ 0 so that ~w · ~xi þ b ≥ 1 for
~xi in the positive class, and ~w · ~xi þ b ≤ −1 for ~xi
in the negative class. The optimization objective is to
find the optimal hyperplane which could maximize
the distance 2=j~wj between two classes, subject to the
constraints yið~w · ~xi þ bÞ ≥ 1 for all i.
Once the parameters of the hyperplane have been

obtained, the classification process for a new vector ~x0
is to find which side of the hyperplane this vector locates.
The classification result for ~x0 is given by

yð~x0Þ ¼ sgnð~w · ~x0 þ bÞ: ð1Þ

If yð~x0Þ ¼ þ1, we will classify the vector ~x0 as positive
class, which means the related handwritten character is
recognized as 6. For the vectors ~x0 which makes
yð~x0Þ ¼ −1, the recognition result is 9.
In the SVM algorithm, the normal vector ~w is

represented by ~w ¼ P
M
i¼1 αi~xi, where αi is the weight

for the ith training vector ~xi. Thus, in this formation,
αi and b are the hyperplane parameters to be optimized. In
the least-squares approximation of SVM [14], these param-
eters can be obtained by solving a linear equation
~Fðb; α1; α2;…; αMÞT ¼ ð0; y1; y2;…; yMÞT . Here, ~F is a
ðM þ 1Þ × ðM þ 1Þ matrix with the essential part as the
kernel matrix K (see note [15] for the explicit form).
In this Letter, we adopt the linear kernels Ki;j ¼
kð~xi; ~xjÞ ¼ ~xi · ~xj.
To access the training vectors quantum mechanically, it

is assumed that we have the training-data oracles that could
return the state j~xii ¼ 1=j~xij

P
N
j¼1ð~xiÞjjji, which is the

quantum counterpart of the training data ~xi [7]. Starting
from the initial state ð1= ffiffiffiffiffi

M
p ÞPM

i¼1 jii, the training-
data oracles are used to prepare the state
jχi ¼ ð1= ffiffiffiffiffiffi

Nχ

p ÞPM
i¼1 j~xijjiij~xii, with Nχ ¼

P
M
i¼1 j~xij2.

After discarding the training set register, the quantum
density matrix is reduced to the kernel matrix K up to a
constant factor trK.
The second step is to optimize the hyperplane parameters

b and αi. The quantum algorithm for solving linear
equations has been proposed [10] and experimentally
realized [16–18] with exponential speedup. Using the same
method, the hyperplane parameters are determined by the
matrix inversion: ðb; ~αTÞT ¼ ~F−1ð0; ~yTÞT . The quantum
register is first initialized into j0; ~yi ¼ ð1= ffiffiffiffiffiffiffiffiffi

N0;y
p Þðj0iþP

M
i¼1 yijiiÞ. Then, by performing the matrix inversion of F,

the quantum state is transferred to

jb; ~αi ¼ 1ffiffiffiffiffiffiffiffiffi
Nb;α

p
�
bj0i þ

XM
k¼1

αijii
�
: ð2Þ

Here, Nb;α and N0;y are normalization factors. Note that,
since the matrix inversion is successful only when the
ancillary qubit is on j1i [10], the following operation on
jb; ~αi should be a conditional operation (Fig. 2).
With the optimized parameters b and αi, the classifica-

tion results yð~x0Þ in Eq. (1) can be represented by

yð~x0Þ ¼ sgn
�XM

i¼1

αið~xi · ~x0Þ þ b
�
: ð3Þ

This could be reproduced by the overlap of the two
quantum states: yð~x0Þ ¼ sgnðh~ν0j ~uiÞ, with the training-
data state j ~ui¼ð1= ffiffiffiffiffiffi

N ~u
p Þ½bj0ij0iþP

M
i¼1absð~xiÞαijiij~xii�

and the query state j~ν0i ¼ ð1= ffiffiffiffiffiffiffi
N ~x0

p Þ½j0ij0iþP
M
i¼1 absð~x0Þjiij ~x0i� [7]. Here, the training-data state

j ~ui could be easily obtained by calling the

FIG. 1 (color online). Samples of optical character recognition
for SVM. (a) The standard font (Times New Roman) images of
characters “6” and “9” for training SVM. ~x1 and ~x2 are the feature
vectors extracted from the sample images, which are labeled as
the “positive” and “negative” class, respectively ðy ¼ �1Þ.
(b) The arbitrarily chosen handwritten samples for testing the
SVM and their corresponding feature vectors. (See Ref. [13] for
detailed derivation).
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training-data oracle on jb; ~αi and an additional training
register (Fig. 3).
To introduce the information of the query vector ~x0, a

unitary inverse operation Ux0 is applied to transfer j~ν0i to
j00i, i.e., Ux0 j~ν0i ¼ j00i. Then, the expansion coefficients
h00jUx0 j ~ui ¼ h~ν0jj ~ui will produce the classification result
yð~x0Þ [19]. It is noted that the unitary operations are
conditional operations controlled by an ancillary qubit.
Hence, the final state will be jψi ¼ jϕij1iA þ j00ij0iA,
with jϕi ¼ Ux0 j ~ui, and j0iA and j1iA denoting the states of
the ancillary qubit. By measuring the expectation value of
the coherent term O≡ j00ih00j ⊗ ðj1ih0jÞA, the classifi-
cation result will be revealed by

yð~x0Þ ¼ sgnðh00jϕiÞ ¼ sgnðhψ jOjψiÞ: ð4Þ

If the expectation value is greater than zero, the classi-
fication result will be positive [yð~x0Þ ¼ þ1]; otherwise, it
will be negative [yð~x0Þ ¼ −1].
Now we turn to the experimental implementation of the

quantum algorithm for OCR. The widely utilized nuclear
magnetic resonance (NMR) technique [20–24] is employed
to realize the four-qubit quantum processor. The experi-
ments are carried out on a Bruker AV-400 spectrometer at
306 K. The sample used is the 13C-iodotrifluroethylene
(C2F3I) dissolved in d-chloroform, which consists of a 13C
nuclear spin and three 19F nuclear spins. The natural
Hamiltonian of this weakly coupled spin system in the
rotating frame is

HNMR ¼
X4
j¼1

πνjσ
j
z þ

X
1≤j<k≤4

π

2
Jjkσ

j
zσkz; ð5Þ

with the parameters shown in Fig. 3(a). The deviation
density matrix of the thermal equilibrium state is
ρeq ¼

P
4
i¼1 γiσ

i
z, where γi represents the gyromagnetic

ratio of each nuclear spin.
The experimental procedure consists of three parts:

(i) the pseudopure state (PPS) preparation [25], (ii) building
the kernel matrix K, and (iii) machine learning and
classification. Starting from the thermal state ρeq, the

FIG. 2 (color online). The schematic diagram of the quantum
SVM. H is the Hadamard gate. The matrix inversion is employed
to acquire the hyperplane parameters. Then, the training-data
oracle is applied to prepare the training-data state j ~ui. The
information of vector ~x0 is introduced by Ux0 and then used
for classification. The auxiliary phase estimation register for
matrix inversion is not shown.

FIG. 3 (color online). (a) Properties of the 13C-iodotrifluroethylene. The chemical shifts νi and scalar coupling constants (Jjk) are on
and below the diagonal of the table, respectively. The chemical shifts are given with respect to the reference frequencies of 100.62 MHz
(Carbon) and 376.48 MHz (Fluorines). (b) The quantum circuit for building the kernel matrix K. The rotation angles
θi ¼ arccot½ðxiÞ1=ðxiÞ2�; i ¼ 0; 1; 2. After discarding the training-data register (the second qubit), the desired kernel matrix K is
obtained as the quantum density matrix of the first qubit. (c) The quantum circuit for classification.H and S are the Hadamard and phase
gates, respectively.
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line-selective method is employed to prepare the PPS [26]:
ρi ¼ ð1 − ε=16ÞI16 þ εj0000ih0000j. Here, I16 represents
the 16 × 16 identity operator and ε ≈ 10−5 is the
polarization.
The quantum circuit of the second part is shown in

Fig. 3. Here, the first qubit (13C) serves as the probe qubit,
and the second qubit (training set register) is encoded with
the information of the two standard sample of characters 6
and 9. The training-data oracle is realized by using two
controlled rotations here. After that, the density matrix of
the probe qubit will be the kernel matrix K up to a constant
factor trK. We utilized the quantum state tomography
technique [27] to measure the density matrix K=trK as

�
0.5065 0.2425
0.2425 0.4935

�
;

which is used to perform a matrix inversion in the next step.
It is noted that this process can be avoided by adopting the
technique of Lloyd et al. [8].
The third part of the experiment is classification. The

labels of training samples yi are encoded into the quantum
register. In this implementation, we make the nonoffset
reduction, i.e., b ¼ 0. Then, the linear equations to be
solved are reduced to F~α≡ ðK þ γ−1I2Þ~α ¼ ~y, where I2 is
the 2 × 2 identity matrix and γ ¼ 2 is a user-specified
weight. Here, by using a rotation along the y axis, i.e.,
R−π=4
y ¼ eiπσy=4, the system register (the third qubit) is

prepared into jyi ¼
�
y1
y2

�
=

ffiffiffi
2

p
. Then, the first two qubits

are utilized here as the phase estimation register to realize
the matrix inversion [10,11] that generates the state F−1jyi
on the third qubit. In this stage, the weights αi of the
support vectors have been solved and stored into the system
register, when the forth qubit is on state j1i. By calling the
training-data oracle again, the weights are encoded to
the coefficient of related support vectors jxii, leading to
the preparation of the training-data state j ~ui. Then the
inverse operation Ux0 , which relates to the query state x0, is
applied. It is noted that these operations after matrix
inversion F−1 should be conditional rotation, as shown
in Fig. 2. In experiment, we pack the circuit for matrix
inversion into one shaped pulse optimized by gradient
ascent pulse engineering (GRAPE) method [28], with the
length of each pulse being 20 ms and the number of
segments being 1000. The remaining part of the circuit is
packed into another GRAPE pulse of 25 ms and 2000
segments. All the pulses have theoretical fidelities over
99% and are designed to be robust against the inhomoge-
neity of radio-frequency pulses.
Finally, the classification result is read out through the

expectation value of the coherent term of the ancillary qubit
j000ih000j ⊗ j1iAh0jA. The expression is slightly different
from Eq. (4), where the auxiliary registers for matrix
inversion are not shown. In the experiment, the information

of the ancillary qubit is transferred to the 13C spin by a
SWAP gate and then is read out through the 13C spectrum
[29]. If the corresponding peak in the 13C spectrum is
upward [e.g., as in Fig. 4(a)], the classification result will be
positive, which means the character recognition result is 6.
On the other hand, when the peak is downward, the
classification result will be 9. In the experiment, we
performed eight different recognition tasks, corresponding
to the eight handwritten characters in Fig. 1. The results are
shown in Fig. 4(b), which are in accord with human
observation. The whole duration of the quantum algorithm
is less than 50 ms, and hence, the decay caused by the
relaxation is negligible.
In the experiment, the main sources of errors come from

the imperfection of pulse sequence and the statistic fluc-
tuation of the signal strength in NMR spectra. The
inhomogeneity of magnetic fields is mostly diminished
owing to the robustness of the GRAPE pulses. In the first
step, the measured value of the kernel matrix (K=trK) has a
fluctuation of 0.01, which leads to an experimental fidelity
of 0.99, compared to the exact solution. In the classification
part, the imperfection of the kernel matrix leads to a
deviation of around 0.01 in the classification result. The
pulses used have theoretical fidelities over 99%, leading to

FIG. 4 (color online). (a) The recognition results given by the
quantum OCR. The results are indicated by the orientation of the
labeled peak in the 13C spectrum. The upward peak in this
spectrum represents a positive result, which classifies the incom-
ing handwritten character as 6. (b) The recognition results
corresponding to the handwritten characters in Fig. 1(b). Rows
1–4 represent the handwritten characters, experimental indica-
tors, amplitude of the coherent term, and recognition results,
respectively.
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a fluctuation of around 0.02. The error originated from the
statistic fluctuation of around 0.01 also contributes to the
errors. The total experimental error does not exceed 0.04
and has no impact on the recognition results (positive or
negative).
To conclude, we have demonstrated the quantum learn-

ing algorithm for artificial intelligence on a four-qubit
quantum processor, i.e., a quantum learning machine. As an
example, we utilized the quantum support vector machine
to solve a minimal optical character recognition problem. In
the experiment, the quantum machine was trained with the
standard fonts of the characters 6 and 9, and then was used
to classify new-coming handwritten characters. The suc-
cessful classification shows the ability of our quantum
machine to learn and work, which is an elementary
requirement of artificial intelligence. This work sheds light
on the bright future of the age of big data by making use of
exponential speedup provided by quantum theory. If the
quantum processor had the capacity for handling signifi-
cantly more qubits (60–300 qubits), it would be able to
learn the entire (classical) information generated each year
and even that of the universe [9].
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