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The quantum benchmarks (QBs) [1–8] provide a funda-
mental criterion for experimental success of quantum gates
and channels by eliminating the possibility that the physical
process is described by an entanglement breaking (EB)
channel [9]. This criterion ensures that the channel is capable
of transmitting quantum entanglement and draws a firm
bottom line on implementation of quantum gates based on
the notion of entanglement. The QBs enable us to demon-
strate an advantage of entanglement in quantum teleporta-
tion processes and a nonclassical performance in quantum
memories [4,10–12]. They also give a prerequisite for
quantum key distribution [13–16]. A common framework
is to observe a response of the gate operation for a set of
nonorthogonal input states. Currently, the majority of QBs
have been given in terms of an average fidelity [12,17,18],
and a main theoretical task is to determine the classical limit
of the fidelity achieved by EB channels. By surpassing such
a classical limit, one can verify that the channel is in the
quantum domain, namely, not an EB channel.
Although the fidelity is a central tool to certify the

performance of quantum gates in quantum information
science, there has been a general interest to invoke the
canonical uncertainty relation or quadrature noises in
evaluating continuous-variable (CV) quantum channels
[10,11,13,19–23]. In such approaches, an incoherence of
the gate operation can be intuitively explained by the amount
of excess quadrature noises above the shot noise limit
assuming the transmission of coherent states or minimum
uncertainty states. Measurements of canonical quadratures
are also favorable in many of the experiments in quantum
informationwith light and atoms [19,20,24–26]. In addition,
we recall a primary question in quantum physics as to
whether a simple trade-off relation holds between the pair of
noises, provided that two of the noncommuting observables
are measured [27,28]. However, such an insightful aspect
has not been addressed much in quantum benchmarking.
One can find an outstanding puzzle on the property of

quadrature noises inducedbyEBmaps. Theoriginal papers of

CV quantum teleportation [10] suggested that, to validate an
entanglement assistance, the amount of excess noises has to
be smaller than two units of the shot noise, referred to as two
quantum duties (two quduties). There is a famous theorem
that a single shot-noise unit of excess noise is unavoidable in
the simultaneous measurement of canonical quadratures
[27–29]. By associating this theorem with another theorem
[9] that any EB channel can be described as a measurement
and following state preparation, it is fascinating to interpret
each of the measurements and the state preparation processes
as being responsible for a single shot-noise penalty [30].
However, this interpretation is inaccurate because the penalty
of two quduties has not been proven to be a classical limit
unbeatable by any EB channel until now. To this end, the
notion of two quduties is missing rigorous links to QBs,
although it sounds highly interesting [31].
On the contrary, a practical CV QB has been established

by determining the classical limit fidelity for an input
ensemble using coherent states with a Gaussian prior
[4,5,21]. This input ensemble, called the Gaussian-
distributed coherent states, gives a modest experimental
setting to observe an effectively linear gate response in the
CV space where the Gaussian prior suppresses the con-
tribution of unfeasibly high-energy input states. Although it
is customary to describe a normal CV channel with a gain
and excess noise terms of canonical quadrature operators
[24,25], the scope of the CV QB had initially been limited
for unit-gain channels corresponding to the unitary action
of CV channels [4]. It was then extended for nonunit-gain
channels in order to deal with an important class of
nonunitary processes such as lossy channels and amplifi-
cation channels [5]. This extension is sufficient to detect all
one-mode Gaussian channels in the quantum domain [5],
similarly to the case of the famous sum criterion for
CV entanglement that witnesses all two-mode Gaussian
entanglement [32,33]. Recently, another extension has been
made to serve probabilistic operations [34]. Hence, the
fidelity-based QB provides a standard method for
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estimating CV quantum operations as well as channels. On
the other hand, proving a CV process with the ensemble of
Gaussian-distributed coherent states could be a more
general idea applicable to varieties of measurement scenar-
ios other than the fidelity. However, it is an open question
whether such a setting finds a significant utility besides the
fidelity-based method.
In this Letter, we present an EB limit in a product form of

canonical noises averaged over Gaussian-distributed coher-
ent states. It offers a QB that generally explains an optimal
trade-off relation between the canonical variables rendered
by EB maps and refines the notion of two quduties. Our QB
is shown to be sufficient for detecting all one-mode
Gaussian channels in the quantum domain. We also
generalize our QB to deal with probabilistic operations
and an asymmetry of quadrature gains. Our results almost
repeat the fidelity-based achievements, but they demon-
strate a fundamental role of canonical variables to observe
genuine quantum coherence in a physical process.
Our goal is to derive a bound from the first and second

moments of canonical variables for output states of a given
channel E by assuming input of coherent states. We start
with the product separable condition [35] in a normalized
form [36]: Any separable state JAB satisfies

Tr½ðux̂A − vx̂BÞ2J�Tr½ðup̂A þ vp̂BÞ2J�

≥ hΔ2ðux̂A − vx̂BÞiJhΔ2ðup̂A þ vp̂BÞiJ ≥
1

4
; ð1Þ

where ðu; vÞ is a real vector with u2 þ v2 ¼ 1 and the
canonical variables satisfy ½x̂A; p̂A� ¼ ½x̂B; p̂B� ¼ i. The first
inequality is due to the property of variances, hô2i ≥ hΔ2ôi.
Let us write x̂B¼ðb̂þ b̂†Þ= ffiffiffi

2
p

and p̂B¼ðb̂−b̂†Þ=ð ffiffiffi
2

p
iÞ.

From the cyclic property of the trace, we have

TrB½x̂BJ� ¼ TrB½b̂†J þ Jb̂�=
ffiffiffi
2

p
;

TrB½x̂2BJ� ¼ TrB½b̂†2J þ Jb̂2 þ 2b̂†Jb̂ − JÞ�=2;
TrB½p̂BJ� ¼ iTrB½b̂†J − Jb̂�=

ffiffiffi
2

p
;

TrB½p̂2
BJ� ¼ −TrB½b̂†2J þ Jb̂2 − 2b̂†Jb̂þ J�=2. ð2Þ

Here, TrAðBÞ denotes the partial trace over subsystem AðBÞ.
Let us write the partial trace as TrB½·� →

R hα�j · jα�iBd2α=π
by the completeness relation for coherent states. Then, the
property of the coherent state, b̂jα�iB ¼ α�jα�iB, enables us
to show

TrB½x̂BJ� ¼
Z

xαhα�jJjα�iB
d2α
π

;

TrB½x̂2BJ� ¼
Z

x2αhα�jJjα�iB
d2α
π

−
JA
2
;

TrB½p̂BJ� ¼ −
Z

pαhα�jJjα�iB
d2α
π

;

TrB½p̂2
BJ� ¼

Z
p2
αhα�jJjα�iB

d2α
π

−
JA
2
; ð3Þ

where JA ¼ TrB½J�, and we use a shorthand notation for the
mean quadratures of a coherent state as

xα≔ hαjx̂jαi¼ αþα�ffiffiffi
2

p ; pα ≔ hαjp̂jαi¼ α−α�ffiffiffi
2

p
i
: ð4Þ

By substituting Eqs. (3) into the first line of Eq. (1), we
obtain the following Lemma.
Lemma.—Any separable state JAB has to satisfy

Y
z∈fx;pg

�
TrA

Z
ðuẑA − vzαÞ2hα�jJjα�iB

d2α
π

−
v2

2

�
≥
1

4
: ð5Þ

We may call this Lemma the hybrid separable condition
because it can be seen as an entanglement detection scheme
where homodyne and heterodyne measurements are respec-
tively performed on subsystems A and B [37]. Our main
result is the following Proposition.
Proposition.—For any λ > 0 and η > 0, any EB channel

E satisfies the uncertainty limit (see Fig. 1)�
V̄x−

η

2ð1þλÞ
��

V̄p−
η

2ð1þ λÞ
�
≥
1

4

�
1þ η

1þλ

�
2

; ð6Þ

where the mean square deviation is defined by

V̄z ¼ V̄zðη; λÞ ≔ Tr
Z

pλðαÞðẑ −
ffiffiffi
η

p
zαÞ2EðραÞd2α; ð7Þ

with ρα ≔ jαihαj and the prior Gaussian distribution

pλðαÞ ≔
λ

π
expð−λjαj2Þ: ð8Þ

This prior enables us to neglect the contribution of high-
energy states with jαj2 ≫ λ−1 and represents a flat distri-
bution in the limit λ → 0. As we will see, the gain factor η
and the input ensemble of Gaussian-distributed coherent
states fpλðαÞ; ραgα∈C are naturally introduced from a
simple entanglement detection scenario which uses our
Lemma on a two-mode state given by applying a quantum
channel E to a two-mode squeezed state. Moreover, the pair
ðV̄x; V̄pÞ essentially comes from the quadrature correla-
tions in Eq. (1) and represents the noise terms of E. It can be
directly measured by homodyne detection on the output
state EðραÞ. Note that Eq. (6) corresponds to the canonical
uncertainty relation when η ¼ 0.
Proof of Proposition.—Suppose that the bipartite state J

is prepared by the action of a channel E as [38,39]

J ¼ EA ⊗ IBðjψξihψξjÞ; ð9Þ

where jψξi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p P∞
n¼0 ξ

njnijni, with ξ ∈ ð0; 1Þ, is a
two-mode squeezed state and I represents the identity
process. This implies

hα�jJjα�iB ¼ ð1 − ξ2Þe−ð1−ξ2Þjαj2EAðρξαÞ: ð10Þ
From Eqs. (3), (7), (8), and (10) we can write
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TrA

Z
ðuẑA − vzαÞ2hα�jJjα�iB

d2α
π

¼ u2
�
TrA

Z
pλðαÞðẑA −

ffiffiffi
η

p
zαÞ2EAðραÞd2α

�
¼ u2V̄z;

ð11Þ
where z ∈ fx; pg, the variable of the integration is rescaled
as ξα → α, and new parameters are given by

λ ¼ 1 − ξ2

ξ2
> 0; η ¼ 1

ξ2

�
v
u

�
2

≥ 0: ð12Þ

If we eliminate ξ in Eqs. (12), we have

1

u2
¼

�
1þ η

1þ λ

�
; or equivalently

v2

u2
¼ η

1þ λ
: ð13Þ

Now, suppose that E is an EB channel. Then J of Eq. (9) is a
separable state, and we can use the Lemma. By substituting
Eq. (11) into Eq. (5), we have

u4
�
V̄x −

ðv=uÞ2
2

��
V̄p −

ðv=uÞ2
2

�
≥
1

4
: ð14Þ

Finally, substituting Eq. (13) into this expression, we
obtain Eq. (6). ▪
Any violation of the condition of Eq. (6) implies that the

channel cannot be simulated by EB channels, and it
establishes a QB to verify the quantum-domain process
with the input ensemble of Gaussian-distributed coherent
states and normal quadrature measurements. The main
implication of our QB is the following. For unit gain η ¼ 1
and completely unknown coherent states λ → 0, Eq. (6)
reduces to ðV̄x − V0ÞðV̄p − V0Þ ≥ ð2V0Þ2, where V0 ≔
hΔ2ẑiρα ¼ 1=2 is the variance of coherent states or the
shot noise. This implies that V̄z − V0 ≥ 0 represents the
extra noise added by channel E. Then, the inequality
ðV̄x − V0ÞðV̄p − V0Þ ≥ ð2V0Þ2 states that the product of
the extra noises is not less than ð2V0Þ2. This 2V0 coincides
with two quduties [10] which have been introduced as the
extra noise induced by the classical teleportation [21,30].
However, note that our bound ðV̄x − V0ÞðV̄p − V0Þ ≥
ð2V0Þ2 reveals a more fundamental aspect of two quduties;
that is, two quduties 2V0 correspond to the minimum of
extra noises induced by arbitrary EB channels. Moreover,
the role of the product form is striking. In general, we could
observe V̄x ≠ V̄p, and some of the EBmaps induce an extra
noise for one quadrature, say x̂, so that it stays below two
quduties as V̄x − V0 < 2V0. However, even in such cases,
our formula states that the extra noise of the other
quadrature V̄p − V0 has to increase to fulfill the limit in
the product form. Therefore, the classical penalty on the
canonical variables is demonstrated as a fundamental basis
through the uncertainty product, and it refines the notion of
two quduties. This fundamental structure holds for nonunit

gain η > 0 and partially known coherent states λ > 0. A
nonunit gain η ≠ 1 implies the amplitude transformation
α →

ffiffiffi
η

p
α. Thereby, the minimum of the uncertainty

product has to keep the scaling determined by the gain
factor η similarly to the amplification-uncertainty principle
[40]. For a finite distribution, λ−1 represents the width of the
prior pλ of Eq. (8). Hence, the factor 1þ λ of Eq. (6) is
thought to be the reduction of the uncertainty due to the
amount of prior knowledge.
Interestingly, one can find an EB map that achieves the

equality of Eq. (6) for any possible parameter set of ðη; λÞ.
This means that Eq. (6) is tight for every pair of ðη; λÞ, and
the inversely proportional curves of Fig. 1 entirely describe
an optimal trade-off relation between canonical quantum
noises to beat the classical channels. In fact, we can show
that Eq. (6) is saturated by the EB map of

EMPðρÞ ¼
Z

SRjγαihαjS†rρSrjαihγαjS†R
d2α
π

; ð15Þ

where Sr ¼ erðâ2−â†2Þ=2 is a squeezer and

γ ¼
ffiffiffi
η

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ λÞ2cosh2r − sinh2r

p ;

eR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ λÞ cosh rþ sinh r
ð1þ λÞ cosh r − sinh r

s
: ð16Þ

This yields a simple form ðV̄x; V̄pÞ ¼ u−2ðe−2R þ v2;
e2R þ v2Þ=2 with Eq. (13), and R determines the balance
between V̄x and V̄p. Obviously, EMP represents the channel
that prepares a minimum uncertainty state after a projection
to a minimum uncertainty state. This structure demon-
strates the mechanism in which each of the measure and
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FIG. 1 (color online). Entanglement breaking limit for quad-
rature noises in Eq. (6) for a set of a normalized gain
η0 ¼ η=ð1þ λÞ. The case of η ¼ 0 retrieves the minimum
uncertainty curve, and the shaded area represents the physically
unaccessible regime.
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preparation processes is responsible for increasing the
excess noises by a single quduty.
As we will prove next, our QB is enough to detect all

one-mode Gaussian channels in the quantum domain. This
is reasonable because J is a Gaussian state whenever E is a
Gaussian channel and the separable condition of Eq. (1) is
known to be sufficient for detection of any two-mode
Gaussian entanglement. In the proof of the Proposition, our
input ensemble fpλðαÞ; ραgα∈C is determined by the pair of
the two-mode squeezed state jψξi and the coherent-state
basis fjαigα∈C. Although one can consider different input
ensembles by assigning other entangled states, it remains
open whether any given ensemble can be related to a
meaningful entanglement detection scenario [41]. On the
other hand, the basis fjαigα∈C is rather regarded as a choice
of the representation that executes the partial trace but
enables us to introduce experimentally relevant input states.
We can show the converse statement of our Proposition

for the class of one-mode Gaussian channels: If E is
Gaussian and not EB, there exists a set of ðη; λÞ and
additional Gaussian unitary operators so that E violates
Eq. (6). This can be proven similarly to the case of the
fidelity-based benchmark [5]: Thanks to Holevo’s classi-
fication of Gaussian channels [42], it is sufficient to check
that the following two types of channels violate Eq. (6).
One is a unit-gain channel (η ¼ 1) which adds one unit of
shot noise to one of the quadratures, e.g., ðV̄x; V̄pÞ ¼
V0ð2; 1Þ. It violates the condition of Eq. (6) for λ < 4. The
other is an amplification or attenuation channel which
transforms the moments of both quadratures as zα →

ffiffiffiffi
G

p
zα

and hẑ2iρα → Gz2α þ ~nþ ðGþ j1 −GjÞ=2, where G ≥ 0 is
an actual gain and ~n ∈ ½0;minf1; GgÞ. This implies
V̄z ¼ λ−1ð ffiffiffiffi

G
p

− ffiffiffi
η

p Þ2 þ ~nþ ðGþ j1 −GjÞ=2, and the
condition of Eq. (6) is violated if ðη; λÞ ¼ ð4G; 1Þ.
Note that, if the channel is assumed to be Gaussian, it is

covariant under displacement [6,43]. Then, one can deter-
mine any channel parameters through covariance matrices
based on the input of a single coherent state. However, the
displacement covariance is not physically justifiable
because it implies that the channel maintains a linear
response even for any high-energy input state. Hence,
we are better off using theGaussian assumption for channels.
In our theorem, the footing of Gaussian-distributed coherent
states bypasses the Gaussian assumption and gives us a
practical platform to explore effectively linear responses
[34,38]. Such a framework would be crucial in experiments
to deal with Gaussian and non-Gaussian ingredients
equally well.
While the product form of uncertainties represents a

fundamental boundary, an EB bound focusing on the total
quadrature noise V̄ ≔ V̄x þ V̄p was known in Ref. [5]. We
can improve this bound as a corollary.
Corollary 1.—Let us define the total noise as V̄ ≔

V̄x þ V̄p with Eq. (7). For any λ > 0 and η > 0, any EB
channel E satisfies

V̄
2
¼ V̄x þ V̄p

2
≥
1

2
þ η

1þ λ
: ð17Þ

This can be proven by applying the relation jaj þ jbj ≥
2

ffiffiffiffiffiffiffiffijabjp
to the Proposition. The inequality of Eq. (17) is

tight, as it can also be saturated by the EB map EMP of
Eq. (15) with r ¼ 0. It improves the QB inequality of
Eq. (10) in Ref. [5] (see [44]). Corollary 1 can be associated
with the famous sumcondition for separability [32],whereas
the Proposition has its origin in the product separable
condition of Eq. (5). Note that, from the total noise V̄,
one can obtain a lower bound of the average fidelity F̄η;λ ≔R
pλðαÞh ffiffiffi

η
p

αjEðραÞj ffiffiffi
η

p
αid2α [4,5,21,34,38,39] by using

the relation F̄η;λ ≥ ð3 − V̄Þ=2 introduced in [5]. This sup-
ports the intuition that a smaller excess noise implies a
higher fidelity and simply connects the measurement of
ðV̄x; V̄pÞ to an estimation of the fidelity.
Finally, we generalize our Proposition to address the

effects of (i) asymmetric gains where the first moments are
expected to transform ðxα; pαÞ → ðgxxα; gppαÞ [19,20] and
(ii) the post-selection where the channel can be a trace-
decreasing map (stochastic quantum channel) [34].
Corollary 2.—For any λ > 0 and any gain pair

ðgx; gpÞ > 0, any stochastic EB map E satisfies�
~Vx −

g2x
2ð1þ λÞ

��
~Vp −

g2p
2ð1þ λÞ

�
≥
1

4

�
1þ gxgp

1þ λ

�
2

; ð18Þ

where ~Vz ≔ V̄zðg2z ; λÞ=Tr½
R
pλðαÞEðραÞd2α� with Eq. (7).

To prove Corollary 2, we replace J in Eq. (1) with
ðSqÞBJðS†qÞB. This transforms the quadratures in the
Lemma as ðx̂A; p̂AÞ → ðx̂Aeq; p̂Ae−qÞ. Furthermore, repeat-
ing the proof of the Proposition starting with J ¼ EA ⊗
IBðjψξihψξjÞ=Tr½EA ⊗ IBðjψξihψξjÞ� instead of Eq. (9), we
can reach Corollary 2 with the form of the gain pair
ðgx; gpÞ ¼ ð ffiffiffi

η
p

e−q;
ffiffiffi
η

p
eqÞ. Since the underlying physics

does not change as long as J is normalized, E is not
necessary to be a trace-preserving operation. Thus, EB
channels are unable to beat our bound even stochastically.
Therefore, Corollary 2 constitutes a unified QB that works
with feasible input-and-measurement settings for a wide
class of CV channels by assigning a gain pair ðgx; gpÞ.
Corollary 2 also describes an optimal trade-off relation due
to EB maps since the inequality of Eq. (18) is saturated by
the EB channel EMP

0ðρÞ ¼ SqEMPðρÞS†q with Eq. (16) for
any given ðgx; gp; λÞ > 0. Although one can use the
fidelity-based QB [5] for asymmetric gains, it may require
a type of squeezed resource such as a measurement of the
fidelities to squeezed states [18].
In conclusion, we have established an uncertainty-

relation-type QB for CV quantum channels. It is usable
to verify the quantum-domain performance for a wide class
of CV quantum channels by assigning a pair of quadrature
gains including stochastic quantum channels. Our results
generally explain the classical penalty of two quduties and
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an optimal trade-off relation on canonical variables to beat
EB channels. This highlights a structural difference from
the fidelity-based QB [5]. We have also proven the
converse statement of our QB for one-mode Gaussian
channels. Hence, our framework has no less generality than
the framework of the fidelity-based QB. It would be
fundamental to address the quantum-amplification limit
[34,38,40] and related cloning limits in our canonical basis
[45]. Although we have concentrated on a single separable
condition of Eq. (1), one can use our approach to translate a
wide class of separable conditions [46–48] into quantum
benchmarking conditions [49].
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