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We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize
an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent
coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our
beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse
modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a
different angle between the optical axis of half-wave plate and the light propagation at each step. Each of
the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip
operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias,
followed by a conditional translation of the walker.
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Quantum walks (QWs) enjoy broad interest due to
widespread applications including quantum algorithms
[1], quantum computing [2], quantum biology [3], and
quantum simulation [4–6] plus the fundamental interest
of being a natural quantized version of the ubiquitous
random walk that appears in statistics, computer science,
finance, physics, and chemistry. QW research has focused
on evolution due to repeated applications of a time-
independent unitary step operator U, but a QW with
time-dependent unitary steps UðtÞ, with discrete time
t ∈ N ≔ f0; 1; 2;…g, opens a much richer array of phe-
nomena including localization and quasiperiodicity [7,8].
Here, we demonstrate a time-dependent QW and use this
technique to demonstrate a revival of the walker’s position
distribution.
Rather than employing direct time-dependent control,

we simulate time-dependent coin control by setting differ-
ent coin parameters for different steps, which are effected in
different locations along the longitudinal axis within our
photonic beam-displacer interferometer (BDI) [9]. The
quantum walker within the BDI is a single heralded photon
produced by spontaneous parametric down-conversion, and
its walking degree of freedom is the set of discretely spaced
transverse beam modes. The coin flip is effected by
employing quarter- and half-wave plates.
Our method for realizing the first time-dependent

QW demonstrates the phenomenon of revivals and also
opens the door to realizing a multitude of time-dependent
QWs experimentally. Compared to prior work employing
position-dependent control [10–12], our new technique

decreases experimental complexity by relaxing the require-
ment of optical compensation. Our QW revival displays
a different characteristic than typical QW properties such
as ballistic spreading and localization of the walker
distribution.
The QW with a coin proceeds as a sequence of coin flips

and then walker-coin entangling operations whereby the
walker’s position is displaced according to the coin state.We
explain the QW now in full generality so the coin operator
admits both spatial and temporal dependence. Spatially
dependent coin operations have dramatically demonstrated
the realization of topological phases by QWs [4–6], but
the time-dependent QW is, until now, only a theoretical
construct and not yet explored experimentally.
We employ a two-parameter coin realized as a sequence

of two rotations, one with constant bias and another coin
that flips along an orthogonal basis with a time-dependent
bias. This two-parameter coin reveals a richer phenomeno-
logical structure than the case of using just one coin
parameter. One way to picture this richness is to consider
the coin operation as being a rotation of the Bloch sphere,
and two parameters allow any rotation to take place
whereas one does not. Thus, having two parameters gives
the coin operation full reach over these rotations.
The walker’s position on the infinite line is given by

the set of orthogonal states fjxi; x ∈ Zg (Z is the set of
all integers), and the homogeneous time-dependent
coin flip CðtÞ ∈ SUð2Þ=Uð1Þ can be expressed as
CðtÞ ¼ RxðΩtÞRyðθÞ ¼ Rt

xðΩÞRyðθÞ for orthogonal unitary
coin-flip operators [1]
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RxðϕÞ ¼
�

cos 2ϕ i sin 2ϕ

i sin 2ϕ cos 2ϕ

�
;

RyðθÞ ¼
�
cos 2θ − sin 2θ

sin 2θ cos 2θ

�
ð1Þ

with ϕ and θ the coin biases and Ω a constant pseudo-
frequency for ramping one coin bias. The coin eigenstates
are j�i. The unitary conditional displacement operator for
the walker is

F ≔ S ⊗ jþihþj þ S† ⊗ j−ih−j; S ≔
X
x∈Z

jxþ 1ihxj;

and the time-dependent step operator is UðtÞ ≔ FCðtÞ.
The Hilbert space for the walker+coin system is

H ¼ spanfjxi ⊗ jcig, and the general state is the density
matrix

ρðtÞ ¼
X
x∈Z

X
c¼�

ρxc;x0c0 ðtÞjxihx0j ⊗ jcihc0j: ð2Þ

A pure walker-coin system corresponds to ρ2 ¼ ρ. The
reduced walker state is the partial trace

ρwðtÞ ≔ trcρðtÞ ¼
X

x∈Z;c¼�
ρxc;x0cðtÞjxihx0j ð3Þ

with the walker’s time-dependent position distribution,

pw
x ðtÞ ¼ hxjρwðtÞjxi ¼

X
c¼�

ρxc;xcðtÞ;
X
x∈Z

pw
x ðtÞ ¼ 1 ∀ t: ð4Þ

The reduced coin state is ρcðtÞ ¼ trwρðtÞ. In our analysis,
the initial coin-walker state is a product state with the
walker beginning at jφiw ≔ jx ¼ 0i and an initial
symmetric coin state jψic ≔ ðjþi þ ij−iÞ= ffiffiffi

2
p

so ρð0Þ ¼
jφiwhφj ⊗ jψichψ j.
AQW from time t ¼ 0 to t ¼ T is effected by the unitary

multistep operator UðTÞ ≔ Q
T
t¼0 UðtÞ. Our aim is to realize

a time-dependent QW and demonstrate a revival at some
time T. We introduce a rigorous definition of a QW revival
here, motivated by the notion of recurrences in random
walks wherein the walker’s position distribution returns to
its original distribution after some time T [13].
We define the revival as the return of the walker’s

position distribution to its original distribution. The dis-
crepancy between two distributions p and p0 is quantified
by the total-variation (TV) distance [14]

dTVðp; p0Þ ≔ 1

2
∥p − p0∥1 ¼

1

2

X
x

jpx − p0
xj: ð5Þ

Thus, the discrepancy between the walker’s distribution at
time t vs at time 0 is dTV(pwðtÞ; pwð0Þ), which is zero at

t ¼ 0 and at any revival time T. In the typical case that the
initial walker state is localized at a point, which can be set
as the origin, the mathematics simplifies significantly as we
now show.
Under the condition that the walker distribution is

localized to a single point, the distance (5) is simply related
to the “QW Pólya number,” which is the quantum version
of the random-walk Pólya number 1 −

Q∞
t¼1 (1 − pw

0 ðtÞ).
This Pólya number is the probability of the walker ever
returning to the origin [15,16].
A QW is “recurrent” only if the QW Pólya number is 1

and “transient” otherwise [15]. The simple relation between
the QW Pólya number and TV distance for a walker
initially localized at x ¼ 0 [i.e., pw

x ð0Þ ¼ δx0] is

dTVðtÞ ¼ 1 − pw
0 ðtÞ; ð6Þ

which is convenient experimentally as only a projective
measurement onto the origin of the walk is required.
A QW revival is achieved at time T if UðTÞ ¼ 1 ⊗ CðTÞ

for some coin operator CðTÞ; i.e., the walker and coin
evolve with period T from separable state jφiwhφj ⊗
jψichψ j to separable state jφiwhφj ⊗ jψ 0ichψ 0j for jψ 0ic ≔
CðTÞjψic.
We denote a length T string of coin flips as the vector c

whose elements are �, and we denote the balanced subset
by CT, which comprises all strings c with an equal number
of þ and − elements. Consequently, T must be an even
number. Then the effective coin operator for time T takes
the form

CðTÞ ¼
X
c∈CT

jcðTÞichcðTÞjCðTÞ…jcð1Þichcð1ÞjCð1Þ

¼
X
c∈CT

YT
t¼1

jcðtÞichcðtÞjCðtÞ; ð7Þ

which directly yields hC†ðTÞCðTÞi ¼ 1.
As a special case CðTÞ ¼ 1 is possible and corresponds

to a joint revival of both the walker and coin state, which we
call a “complete revival” and implies jψ 0ic ¼ jψic.
Experimentally, we show a complete revival at T by
demonstrating that the TV distance between the walker
distributions at t ¼ T vs at t ¼ 0 is small, and we show that
both overlaps O≔chψ jρcðTÞjψic and O0≔chψ 0jρcðTÞjψ 0ic,
calculated from the tomographically reconstructed reduced
coin state, are close to 1.
In Table I, we show for each T up to 8 which values of θ

and Ω yield revivals and show in bold which values also
give CðTÞ ¼ 1. Experimentally, we realize four of the cases
in the table, corresponding to T ¼ 8, thereby demonstrating
revivals of a time-dependent QW.
We now describe the experimental realization of the QW

with revivals, which uses an 800.0 nm single heralded
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photon as the walker. The detailed scheme is depicted in
Fig. 1 and explained fully in the figure caption.
To make the walker, we generate a wavelength-

nondegenerate polarization-degenerate pair of photons by
type-I spontaneous parametric down-conversion in a pair of
back-to-back nonlinear BBO crystals pumped by a
400.8 nm cw diode laser with up to 100 mW of power;
one photon serves as the trigger detected by the APD
detector with a dark count rate of < 100 s−1.

The trigger photon heralds the walker photon through
two-photon coincidence detection. More than 20 000
coincidence counts are detected in an overall measurement
time. Although our system is operated in continuous-wave
mode, photodetection events effectively postselect propa-
gating pulsed-photon states. The probability for more than
one photon pair is less than 10−4, hence, neglected. The
walker photon goes through a BDI [8,9,17], which is a
robust interferometer that enables more steps than is the
case for other interferometers.
The BDI is a sequence of birefringent calcite beam

displacers (BDs). Each BD with length 28.165 mm splits a
beam into two parallel beams, which are recombined
interferometrically at the next BD with interference vis-
ibility reaching 0.996 per step. The BDs increase in size as
the step number increases, and the largest BD has a clear
aperture 33 × 15 mm.
The optical axis of each BD is cut so that vertically

polarized light is directly transmitted and horizontal light
undergoes a 3 mm lateral displacement into a neighboring
mode, which interferes with the vertical light in the same
mode. These parallel beams create an integer lattice
perpendicular to the direction of beam propagation.
The initial walker-coin product state is prepared in a

product state by directing the photon through a PBS, HWP,
and finally QWP at the initial phase of the BDI; these three
components control the polarization state of the walker
photon. The state jþi corresponds to a single horizontally
polarized photon jHi, and the state j−i corresponds to a
single vertically polarized photon jVi. Interference filters
restrict the photon bandwidth to 3 nm, and these band-
width-limited photons are then steered into the optical
modes of the linear-optical network formed by a series
of BDs.
Subsequent to preparing the initial walker-coin state,

each QW step proceeds by directing the beam sequentially
through regions comprising a BD followed by a HWP
to effect RyðθÞ with θ the HWP tilt angle and finally
through a second HWP sandwiched between two QWPs.
The two QWPs have optical axes oriented vertically
and horizontally, respectively, and the second HWP is
set at Ωt mod 2π.
Together the HWP and the sandwiching QWPs collabo-

rate to effect the unitary operator RxðΩtÞ. Compared to the
previous work by using position-dependent phase shifters
[8,17], the sandwiched wave plates are an important
technical advance for QW interferometry because the
sandwiched wave plates do not require optical compensa-
tors whereas position-dependent phase shifters cause pho-
tons to experience phase differences due to optical path
differences and must be compensated. The walker’s evo-
lution time t thus corresponds to longitudinally sequential
QW steps. With this scheme, we are able to realize eight
steps as the number of steps.

FIG. 1 (color online). Scheme for realizing a T-step QW with
time-dependent coin flipping. (a) A β-barium borate (BBO)
crystal is pumped to yield two correlated photons, one arriving
at a trigger detector to herald the other photon; experimentally,
this trigger-herald pair is registered by a coincidence count at the
two avalanche photo diodes (APDs, 7 ns time window). The
initial walker-coin state is prepared by the heralded photon
proceeding through a polarizing beam splitter (PBS) and then
a half-wave plate (HWP) and a quarter-wave plate (QWP) prior to
arriving at the first beam displacer (BD). A combination of a
QWP-HWP-QWP sequence, depicted by a cuboid, implements
the coin-flip operator RxðΩÞ and the HWP implements RyðθÞ.
Coin-flip operator RyðθÞ is realized with a HWP angle set to θ.
(b) Implementation of RxðΩtÞ as a HWP set to Ωt ðmod2πÞ
sandwiched between two QWPs. (c) Bloch sphere representation
of the rotations on the coin.

TABLE I. Rotation parameters θ and Ω leading to a revival for
T ≤ 8, and bold parameters are cases for which CT ¼ 1, hence,
revivals of both walker and coin for given T. The four exper-
imentally realized cases are shown in boxes for T ¼ 8.

T θ=π Ω=π

2 0 1=8, 3=8
2 1=4 0, 1=4, 1=2
4 0 1=12, 1=4, 5=12
4 1=4 0, 1=6, 1=3, 1=2
6 0 1=16, 3=16, 5=16, 7=16
6 1=4 0, 1=8, 1=6, 1=4, 3=8, 1=3, 1=2
8 0 1=20 , 1=8 , 3=20, 1=4, 7=20, 3=8, 9=20

8 1=4 0,1=10 , 1=8 , 1=5, 1=4, 3=10, 3=8, 2=5, 1=2
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We now present in Table II the results of our experi-
ments for four parameter choices of θ and Ω given in
the boxes of Table I. In all cases, the small distances
dTV indicates excellent QW revivals, and overlaps O0
close to 1 indicate that the coin state is quite close to the
theoretical state.
Specifically, we have demonstrated two consecutive

complete revivals for the case that T ¼ 8 and also per-
formed the experiment for two other parameter choices that
lead to incomplete revivals. Now we study the case θ ¼ 0
and Ω ¼ π=8 in detail. The results are shown in Fig. 2,
which show (a) the walker distribution from the 1st step to
the 16th step, (b) the theoretical vs experimental walker
distribution at the 16th step, and the (c) real and (d) imagi-
nary parts of the topographically reconstructed coin state at
the 16th step.
The walker’s distribution exhibits two strong revivals

(Fig. 2) at the 8th and 16th steps, and a pronounced walker-
position-distribution peak reforms at the origin. Specifically,

we obtain the experimental results pw
x¼0 ¼ 0.918� 0.037

and 0.803� 0.051 for the first and second revivals with
correspondingly low probabilities at the other positions.
From the relation between dTV and p0 (6), we obtain small
dTV ¼ 0.082� 0.014 and 0.197� 0.043 for the first and
second revivals, respectively.
Additionally, we perform a tomographic reconstruction

of the coin state to demonstrate a complete revival of the
walker-coin state. The resultant overlaps between the
reduced coin state and the initial coin state are O ¼
0.965� 0.031 and 0.818� 0.024 for the first and second
revivals, which equal the overlaps O0 as required for this
complete revival.
To explain the incomplete revival, we show in Fig. 3 the

detailed reduced walker and coin distributions for θ ¼ π=4
and Ω ¼ π=10 corresponding to an incomplete revival. In
contrast to the complete revival shown in Fig. 2, we obtain a
low overlap O ¼ 0.640� 0.025; this low overlap can be
fully understood by realizing that the final coin state is
theoretically predicted to be 0.988jHi þ 0.156ijVi. The

TABLE II. For four choices of θ and Ω and measuring at the first (or second) revival, experimental results for TV distances obtained
from measured pw

0 via Eq. (6), overlap O between initial and final coin state, and overlap O0 between final coin state and theoretically
predicted coin state. Error bars are in columns indicated with Δ. N is the number of the steps.

N θ=π Ω=π dTV ΔdTV O ΔO O0 ΔO0

16 0 1=8 0.197 0.043 0.818 0.024 0.818 0.024
16 1=4 1=8 0.206 0.039 0.803 0.025 0.803 0.025
8 0 1=20 0.109 0.020 0.642 0.018 0.972 0.019
8 1=4 1=10 0.095 0.015 0.640 0.025 0.971 0.023

FIG. 3 (color online). Incomplete revival. (a) Experimentally
measured position distributions for successive QW steps up to
one revival (T ¼ 8) for time-dependent coin parameters θ ¼ π=4
and Ω ¼ π=10, commencing with a symmetric coin state. (b)
Experimental and theoretical walker probability distribution after
8 steps. (c) Real part and (d) imaginary part of the experimentally
reconstructed density matrix of the coin state after 8 steps, which
is close to its theoretical prediction 0.988jHi þ 0.156ijVi.

FIG. 2 (color online). Complete revival. (a) Experimentally
measured position distributions (blue bars) for successive
QW steps up to two revivals (T ¼ 8) for time-dependent coin
parameters θ ¼ 0 and Ω ¼ π=8, commencing with a symmetric
coin state. (b) Experimental and theoretical walker probability
distribution at the second revival time with error bars indicating
statistical uncertainty. (c) Real part and (d) imaginary part of
the experimentally reconstructed density matrix of the coin state
after 16 steps, which has returned close to its original state
ðjHi þ ijViÞ= ffiffiffi

2
p

.
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low O for these parameters is merely indicating that the
coin state has been rotated from its initial value. The walker
distribution returns to a highly localized state as expected
and is, in that sense, analogous with the case presented
in Fig. 2.
In contrast to the revival achieved by an evolution

followed by its time-reversal, U†U ¼ 1 [18], our experi-
ment demonstrates a controlled-evolution result for a QW
with a time-dependent coin and specifically shows that we
have achieved sufficient control to realize periodic dynam-
ics of the QW. We emphasize that our implementation
features easy and convenient adjustability of the coin bias.
Performance of our setup is limited only by imperfections
of the optical components such as nonplanar optical
surfaces and coherence length of single photons, resulting
in decoherence, which causes systematic errors in our
setup: the imperfection coherence visibility of the BDI.
Here, we have reported incomplete and two complete

revivals for effective time-dependent coin control up to 16
steps, but our scheme can be scaled up to realize even more
time steps. The number of sequential BDs grows linearly
with the number of time steps, and the aperture of the last
BD also increases linearly with the number of steps (if the
distribution of the walker spreads). Furthermore, the BD
surface needs to be flat with high quality. Thus, scaling up
the interferometer is challenging but satisfies the quantum
information scalability principle of carrying a subexponen-
tial resource overhead.
In summary, we have implemented a stable and efficient

way to realize a one-dimensional photonic QW with time-
dependent coin flipping and thereby observe two revivals
of a QW. The time-dependent coin flipping is divided into
two successive noncommuting rotations on the coin, one of
which is time dependent. Our experiment benefits from the
high stability and full control of both coin and walker at
each step and in each given position.
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