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We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes
a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is
adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap
above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink
boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its
q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which
was shown by Janzing to be capable of universal computation. We observe that in the limit of large system
size, the time evolution is equivalent to the exactly solvable quantum walk on Young’s lattice.
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Adiabatic quantum computation [1] is a computational
model where one gradually converts a (efficiently prepar-
able) ground state of a simple Hamiltonian into a (computa-
tionally useful) ground state of another Hamiltonian using
adiabatic evolution with a slowly changing Hamiltonian.
This model was shown to be equivalent to the standard

quantum circuit model [2] through the use of the Feynman-
Kitaev circuit-to-Hamiltonian construction [3,4]. Although
the class of universal Hamiltonians originally considered
(nearest neighbor interactions between six-dimensional
particles in two dimensions) is not practically viable,
perturbation gadget techniques [5,6] were later used to
massage it into simpler forms [7,8]. However, these
techniques have the disadvantage of requiring impractically
high variability in the coupling strengths which appear in
the Hamiltonian (see, e.g., the analysis in Ref. [9]). Given
this state of affairs, it is of interest to consider how to
construct a universal adiabatic quantum computer with a
physically plausible Hamiltonian without using perturba-
tive gadgets.
An alternative type of circuit-to-Hamiltonian mapping

which is conceptually distinct from the Feynman-Kitaev
construction has been used by some authors [10–16]. In
these works a quantum circuit is mapped to a Hamiltonian
which acts on a Hilbert space with computational and
“local” clock degrees of freedom associated with every
qubit in the circuit. This idea was first explored by
Margolus in 1989 [10], just four years after Feynman’s
celebrated paper on Hamiltonian computation [3].
Margolus showed how to simulate a one-dimensional
cellular automaton by Schrödinger time evolution with a
time-independent Hamiltonian. More recently, Janzing [11]
presented a scheme for universal computation with a time-
independent Hamiltonian. In Ref. [14] it was claimed that
an approach along these lines can be used to perform

universal adiabatic quantum computation; unfortunately,
the analysis presented by Mizel et al. does not establish the
claimed results. The local clock idea was developed further
in the recent “space-time circuit-to-Hamiltonian construc-
tion” and was used to prove that approximating the ground
energy of a certain class of interacting particle systems is
QMA-complete [16].
Our main result is a new method which achieves efficient

universal adiabatic quantum computation using the space-
time circuit-to-Hamiltonian construction. The Hamiltonian
we use describes a system of interacting particles which
live on the edges of a two dimensional grid. To prove that
the resulting algorithm is efficient we use a mapping from
our Hamiltonian to the ferromagnetic XXZ model with
kink boundary conditions [17]. Our work can be viewed as
a carefully tuned adaptation of the proposal from Ref. [11]
to the quantum adiabatic setting. In the final part of this
work, we turn our attention to Janzing’s proposal for
computation with a time-independent Hamiltonian and
we present a new analysis based on the quantum walk on
Young’s lattice.
Universal adiabatic quantum computation.—We con-

sider the universal circuit family used in Ref. [11] and
depicted in Fig. 1(a), i.e., 2n-qubit circuits which can be
schematically drawn as a rotated n × n grid [shown in
Fig. 1(b)] where each plaquette p on the grid corresponds to
a two-qubit gate Up. For technical reasons we further
restrict the circuit so that many of the gates are fixed to
be the identity; in particular, we set k ¼ ffiffiffi

n
p

=16 and select
the rotated k × k subgrid with its left corner in the center of
the original lattice as the “interaction region”; see Fig. 1(c).
In this interaction region the gates Up are unrestricted,
elsewhere they are identity gates.
We map such a circuit to a Hamiltonian HðλÞ which

depends on a single parameter λ ∈ ½0; 1�. We will
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demonstrate that (a) HðλÞ has a unique ground state for all
λ ∈ ½0; 1�, (b) the ground state of Hð0Þ can be efficiently
prepared, (c) the output of the quantum circuit is obtained
with sufficiently high probability by performing a simple
measurement in the ground state of Hð1Þ, and (d) the
eigenvalue gap above the ground energy of HðλÞ is lower
bounded as 1=polyðnÞ for all λ ∈ ½0; 1�. These properties
allow us to efficiently simulate the given quantum circuit
using the quantum adiabatic algorithm with interpolating
Hamiltonian HðλÞ.
We consider a multiparticle Fock space where the

particles live on the edges of the rotated n × n grid, and
each particle has a two-dimensional internal degree of
freedom that encodes a qubit. For an edge with midpoint
that intersects horizontal and vertical coordinates (t; w) (as
shown in Fig. 1(b), these are unrotated coordinates) we
define an operator at;x½w� which annihilates a particle on
that edge with internal state x ∈ f0; 1g, and a number
operator nt;x½w� ¼ a†t;x½w�at;x½w� which counts the number
of particles in this state. HðλÞ is defined using these
operators and, as we will see, it conserves the total number
of particles on each horizontal line w. We restrict our
attention to the sector where there is exactly one particle for
each w ∈ f1;…; 2ng; for the rest of this Letter we work in
this finite-dimensional Hilbert space. The coordinate t can
be viewed as a local time variable (local, since different
particles may be located on edges with different values
of t). For our purposes it is irrelevant whether the particles
are fermions, bosons or distinguishable particles, since each
particle never strays from its horizontal line of edges.
For a gate Up with plaquette p bordered by edges

ðt; wÞ; ðtþ 1; wÞ; ðt; wþ 1Þ; ðtþ 1; wþ 1Þ, we define

Hp
prop ¼ −

X
α;β;γ;δ

ðhβ; δjUpjα; γia†tþ1;β½w�at;α½w�

× a†tþ1;δ½wþ 1�at;γ½wþ 1�Þ þ H:c:;

which allows nearest-neighbor particles to hop together.
When the particles are both located before (or after) the
plaquette,Hp

prop can map them onto being both located after
(or before) it, while their internal qubit degrees of freedom
are changed according to Up (or U†

p). For each λ ∈ ½0; 1�
we define a positive semidefinite operator

Hp
gateðλÞ ¼ nt½w�nt½wþ 1� þ ntþ1½w�ntþ1½wþ 1� þ λHp

prop;

where nt½w� ¼ nt;0½w� þ nt;1½w�. The Hamiltonian HðλÞ is
built out of these gate operators as well as an operator
Hstring which ensures that the time variables for different
particles remain synchronized. Consider a state where the
2n occupied edges of the grid form a connected string
with endpoints at the top and bottom [e.g., the red string in
Fig. 1(b)]. Such a string can be represented by 2n bits
z ¼ z1z2…z2n, where 0 ¼ = represents an edge going down
and to the left and 1 ¼ n is an edge going down and to the
right, with total Hamming weight wtðzÞ ¼ n. The subspace
of the Hilbert space with this property can be identified [18]
with the space

Sstring ¼ spanfjxijzi∶ x; z ∈ f0; 1g2n; wtðzÞ ¼ ng ð1Þ

where z describes the string and x represents the 2n-qubit
state encoded in the internal degrees of freedom. It is clear
that Sstring is an invariant subspace for each of the gate
operators Hp

gateðλÞ—acting with these operators on a state
in Sstring can move the string forward (or backward) and
modify the internal state of the particles, but the string
remains connected and fixed at the bottom and top of the
grid. HðλÞ will contain a term Hstring which penalizes
particle configurations which do not correspond to con-
nected strings; this will ensure that the ground state ofHðλÞ
is in Sstring. We define Hstring ¼

P
vH

v
string as a sum of

terms for each vertex in the grid, where, if vertex v has
four incident edges labeled ðt; wÞ; ðtþ 1; wÞ; ðt; wþ 1Þ;
ðtþ 1; wþ 1Þ, we let

Hv
string ¼ nt½w� þ ntþ1½w� þ nt½wþ 1� þ ntþ1½wþ 1�

− 2ðnt½w� þ ntþ1½w�Þðnt½wþ 1� þ ntþ1½wþ 1�Þ:
ð2Þ

For vertices at the boundaries of the grid which have degree
<4, this definition is modified so that it only includes
operators for the edges which are present. Note that
Hstring ≥ 0 in the Hilbert space we are working in (the
space with exactly one particle per horizontal line), and its
null space is equal to Sstring. More generally, a particle
configuration corresponding to a set of occupied edges
which form L string segments which are disconnected from

(a) (b) (c)

FIG. 1 (color online). A quantum circuit of the form shown in
(a) (each gray square is a two qubit gate) is mapped to a
Hamiltonian which describes a system of interacting particles that
live on the edges of the rotated grid shown in (b). In the ground
state, the edges occupied by particles form a connected string, as
illustrated by the thick (red) line. (c) Many of the gates are fixed
to be the identity; the gates which are unrestricted correspond to
plaquettes within a k × k subgrid, the “interaction region,” with
the left corner in the center of the grid (shown in black).
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one another has energy 2L − 2, the number of “loose ends.”
In particular, the smallest nonzero eigenvalue ofHstring is 2.
We are now ready to define the Hamiltonian HðλÞ. For

λ ∈ ½0; 1� we let

HcircuitðλÞ ¼
X
p

Hp
gateðλÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
Hinit;

HðλÞ ¼ Hstring þHcircuitðλÞ þHinput;

where Hinit ¼ nnþ1½w ¼ 1� þ nnþ1½w ¼ 2n� is chosen
so that in the ground state of Hð0Þ all particles are
located at the left boundary of the grid, and Hinput ¼P

2n
w¼1

P
t≤n nt;1½w� ensures that the internal state of each

particle is correctly initialized to j0i when the particle is on
the left-hand side of the grid. We now investigate the
ground space of HðλÞ.
To begin, observe that Hstring commutes with each of the

plaquette operators Hp
prop [19] and also with each of the

number operators nt;z½w�. Thus ½Hstring; HðλÞ� ¼ 0. As
noted above, the ground energy of Hstring is zero and its
first excited energy is 2. In the following we show that the
smallest eigenvalue of HðλÞ within the space Sstring isffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
. Since

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
< 2 this establishes that the

corresponding eigenvector of HðλÞ is the ground state.
First consider Hð0Þ. Since

P
pH

p
gateð0Þ has minimal

energy when the string is either 1n0n or zinit ¼ 0n1n, and
since Hinit penalizes configurations where the first edge of
the string is n or the last edge is =, we see that the ground
space of Hcircuitð0Þ þHstring (with eigenvalue 1) is spanned
by states jxijziniti. The term Hinput penalizes all of these
states except j02nijziniti which is the unique ground state of
Hð0Þ, with ground energy 1. Note that our adiabatic
quantum computation can be efficiently initialized since
this state is easy to prepare.
To understand the ground space of HðλÞ when λ > 0, it

will be convenient to work with a different basis for the
space Sstring which builds in the details of the quantum
circuit. For any configuration of the string z ∈ f0; 1g2n
with wtðzÞ ¼ n, let VðzÞ be the unitary equal to the product
of all the two-qubit gates associated with plaquettes which
lie to the left of the string. In other words VðzÞ is the total
unitary of the partially completed circuit with boundary
described by z. Define basis vectors

jx; ziV ¼ VðzÞjxijzi x; z ∈ f0; 1g2n; wtðzÞ ¼ n ð3Þ

which span Sstring. The action of HcircuitðλÞ in this basis has
a nice form: it acts nontrivially only on the string degree of
freedom; the two-qubit gates which make up the circuit are
“rotated away.”Moreover, its action on the string register is
equivalent (up to a term proportional to the identity and a
multiplicative constant) to the ferromagnetic XXZ chain
with kink boundary conditions

Vhx0; z0j
�
HcircuitðλÞ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
I
�
jx; ziV

¼ 2δx0;xhz0jHXXZðλÞjzi ð4Þ

where [17] (writing X; Y; Z for the Pauli operators)

HXXZðλÞ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
1− λ2

p
ðZ2n −Z1Þ

−
1

4

X2n−1
w¼1

½ðZwZwþ1 − IÞ þ λðXwXwþ1 þ YwYwþ1Þ�

¼
X2n−1
w¼1

jΨqðλÞihΨqðλÞjw;wþ1;

λ¼ 2

qðλÞ þ qðλÞ−1 ; ð5Þ

where 0 ≤ qðλÞ ≤ 1 and the q-deformed singlet equals
jΨqi ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p
Þðj10i − qj01iÞ. This spin chain can

be viewed as a q analogue of the ferromagnetic Heisenberg
chain; it has a remarkable SUqð2Þ quantum group sym-
metry which is a deformation of the SU(2) symmetry
of the Heisenberg ferromagnet. Its spectral gap, ground
space [17], and excitations are known [17,20]. In the
Supplemental Material [21] we derive an expression for
the zero energy ground state of HXXZðλÞ in the sector with
Hamming weight n. Using this expression and Eq. (4) we
immediately obtain a spanning basis for the

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
energy

ground space of Hstring þHcircuitðλÞ, given by (up to
normalization)

jΦλðxÞi ¼
X

z∶ wtðzÞ¼n

qðλÞ−AðzÞjx; ziV x ∈ f0; 1g2n; ð6Þ

where AðzÞ ¼ P
2n
j¼1 jzj − ½nðnþ 1Þ=2� is the area of the

grid which lies to the right of the string (and zj is the jth bit
of z). We see that when λ < 1 the associated probability
distribution over strings favors the left-hand side of
the grid; the most likely string is zinit ¼ 0n1n [with
AðzinitÞ ¼ n2], the least likely is 1n0n [with AðzÞ ¼ 0],
etc. The term Hinput penalizes every state [Eq. (6)] except
jΦλð02nÞi, which is the unique ground state of HðλÞ, with
energy

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
, for 0 < λ ≤ 1.

The ground state jΦλ¼1ð02nÞi of the final Hamiltonian is
a uniform superposition over basis vectors j02n; ziV corre-
sponding to all possible configurations of the string z. To
obtain the output of the quantum circuit we measure the
locations of the 2k particles which lie on horizontal lines
that intersect the interaction region. If we find that all of
these particles are located on edges to the right of the
interaction region then their internal degrees of freedom
give the output of the quantum circuit. Since the string is
connected, this is guaranteed to occur as long as the nth
particle (i.e., the particle on horizontal line w ¼ n) is
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located on an edge which lies to the right of the interaction
region. In the Supplemental Material [21] we show that,
with our choice k ¼ ffiffiffi

n
p

=16, this occurs with probability
lower bounded by a positive constant. Finally, we lower
bound the eigenvalue gap of HðλÞ.
Theorem 1: The smallest nonzero eigenvalue of

HðλÞ−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− λ2

p
I is at least ð1=ð4nþ3ÞÞð1−λcosðπ=2nÞÞ

for all λ ∈ ½0; 1�.
This Ωðn−3Þ bound establishes that the adiabatic quan-

tum computation can be performed efficiently. The proof,
given in the Supplemental Material [21], uses the known
expression for the eigenvalue gap ofHXXZðλÞ and a Lemma
for bounding the smallest nonzero eigenvalue of an
operator sum.
In an attempt to improve the success probability of a final

measurement, one might consider modifying this scheme
so that the ground state of the final Hamiltonian is localized
at the right side of the grid. This can be achieved by adding
another segment to the adiabatic path: after reaching Hð1Þ,
replace Hinit with Hendit ¼ nn½w ¼ 1� þ nn½w ¼ 2n� and
then reduce λ from 1 to 0. With this choice, every state in
the ground space of the final Hamiltonian has particle
configuration corresponding to the string 1n0n on the far
right. However, the ground space is degenerate (since
Hinputjx; 1n0niV ¼ 0 for all computational input states x).
Although the error-free Hamiltonian has a symmetry
which prevents transitions between the ground state cor-
responding to the correct input and the other wrong-input
states, an imperfect realization could potentially derail the
computation.
Universal computation with a time-independent

Hamiltonian.—We now discuss a bare-bones version of
the related scheme from Ref. [11]. The quantum circuit
family is the same as before, except that now the interaction
region is chosen to be the first K2 gates in the circuit with
K ¼ n=4, i.e., the K × K subgrid at the far left side
of the n × n grid. The circuit is simulated using
Schrödinger time evolution with initial state j02n; zinitiV
and time-independent Hamiltonian Hprop ¼

P
pH

p
prop.

After evolving for time t, one measures the location of
each particle and if one finds them all outside the
interaction region then the internal degrees of freedom
give the output of the circuit. Janzing’s analysis of this
scheme is based on an equivalence between Hprop and the
XY model, which can be diagonalized using a Jordan-
Wigner transformation (a unitary mapping to a system of
noninteracting fermions in one dimension). In the
Supplemental Material [21] we extend one of Janzing’s
Theorems to prove that the above scheme efficiently
simulates a quantum circuit. Specifically we prove that,
if the evolution time t is randomly (uniformly) chosen in
the interval ½0; T� with T ¼ cn3 (for some constant c), the
probability to measure all the particles outside the inter-
action region is at least 1

4
þOð1= ffiffiffi

n
p Þ.

Here we focus on the limit n → ∞ and directly analyze
the time evolution in the given basis without using a
Jordan-Wigner transformation. In this way we obtain a
detailed picture of the dynamics of the string. To begin,
note that a string is associated with a Young diagram (or,
equivalently, an integer partition) obtained by rotating the
portion of the grid which lies to the left of the string by 45
degrees. In the limit n → ∞, the set of string configurations
is in one-to-one correspondence with the set of Young
diagrams. In the basis [Eq. (3)], Hprop acts nontrivially only
on the string degree of freedom and it acts on this space as
−HY , where HY is the adjacency matrix of Young’s lattice,
shown in Fig. 2. In this infinite graph two Young diagrams
are connected by an edge if they differ by one box. The
dynamics of our system is given by the quantum walk on
Young’s lattice starting from a very special initial state: the
empty partition O. This quantum walk can be solved
exactly [26]; the solution is

eiHY tjOi ¼ e−ðt2=2Þ
X∞
m¼0

ðitÞmffiffiffiffiffiffi
m!

p jϕmi; ð7Þ

where the normalized state jϕmi ¼ ð1= ffiffiffiffiffiffi
m!

p ÞPσ⊢mdσjσi,
σ⊢m indicates that σ is a partition of m, and dσ is the
dimension of the irreducible representation of the sym-
metric group Sm associated with σ (given by the hook-
length formula). For completeness, in the Supplemental
Material [21] we review the derivation of Eq. (7).
We see that the quantum walk takes place in a tiny

subspace of the full Hilbert space spanned by
fjϕmi∶m ≥ 0g. The probability distribution over partitions
σ as a function of time is given by pðσ; tÞ ¼
ðm!Þ−2e−t2t2md2σ (where σ⊢m) which is a Poissonized
Plancherel measure [27]. The marginal distribution of m
is Poisson with mean and variance E½m� ¼ VarðmÞ ¼ t2. In
our case m represents the area to the left of the string (i.e.,
the number of gates that have been applied) and this shows
that, roughly speaking, this area increases quadratically.
For large times the random variable m is peaked about its
mean in the sense that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðmÞp

=E½m� is small. The
conditional distribution over partitions λ⊢m for fixed m
is the widely studied Plancherel measure ρmðσÞ ¼ d2σ=m!,
which is known to exhibit a limiting behavior [28]. Imagine

FIG. 2. Young’s lattice.
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sampling a partition from ρm, drawing it in the x-y plane
and then rescaling both axes by 1=

ffiffiffiffi
m

p
. As m → ∞, the

resulting picture approaches a fixed shape with probability
→ 1 [27,28] (we include a plot of this shape in the
Supplemental Material [21]). Roughly speaking, for large
times we envision the string as a wave front which moves
with constant speed and with scaled shape described by this
limit theorem.
Finally, note that although it was convenient to consider

the limit n → ∞, we expect this analysis to be approx-
imately valid for finite n when t is small enough so that
Eq. (7) is supported almost entirely on partitions contained
in the left-hand side of the rotated n × n grid.
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