
Unifying Framework for Relaxations of the Causal Assumptions in Bell’s Theorem

R. Chaves,1 R. Kueng,1 J. B. Brask,2 and D. Gross1,3
1Institute for Physics, University of Freiburg, Rheinstrasse 10, D-79104 Freiburg, Germany

2Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland
3Freiburg Center for Data Analysis and Modeling, Eckerstrasse 1, 79104 Freiburg, Germany

(Received 28 November 2014; published 7 April 2015)

Bell’s theorem shows that quantum mechanical correlations can violate the constraints that the causal
structure of certain experiments impose on any classical explanation. It is thus natural to ask to which
degree the causal assumptions—e.g., locality or measurement independence—have to be relaxed in order
to allow for a classical description of such experiments. Here we develop a conceptual and computational
framework for treating this problem. We employ the language of Bayesian networks to systematically
construct alternative causal structures and bound the degree of relaxation using quantitative measures that
originate from the mathematical theory of causality. The main technical insight is that the resulting
problems can often be expressed as computationally tractable linear programs. We demonstrate the
versatility of the framework by applying it to a variety of scenarios, ranging from relaxations of the
measurement independence, locality, and bilocality assumptions, to a novel causal interpretation of
Clauser-Horne-Shimony-Holt inequality violations.
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The paradigmatic Bell experiment [1] involves two
distant observers, each with the capability to perform
one of two possible experiments on their shares of a
joint system. Bell observed that even absent of any detailed
information about the physical processes involved, the
causal structure of the setup alone implies strong con-
straints on the correlations that can arise from any classical
description [2]. The physically well-motivated causal
assumptions are the following: (i) Measurement independ-
ence: experimenters can choose which property of a system
to measure, independently of how the system has been
prepared. (ii) Locality: the results obtained by one observer
cannot be influenced by any action of the other (ideally
spacelike separated) experimenter. The resulting con-
straints are Bell’s inequalities [1]. Quantum mechanical
processes subject to the same causal structure can violate
these constraints—a prediction that has been abundantly
verified experimentally [3]. This effect is commonly
referred to as “quantum nonlocality”.
It is now natural to ask how stable quantum nonlocality is

with respect to relaxations of the causal assumptions. Which
degree of measurement dependence, e.g., is required to
reconcile empirically observed correlations with a classical
and localmodel? Such questions are not only,we feel, of great
relevance to foundational questions—they are also of interest
to practical applications of nonlocality, e.g., in cryptographic
protocols. Indeed, eavesdroppers can (and do [4]) exploit
the failure of a given cryptographic device to be constrained
by the presumed causal structure to compromise its security.
At the same time, it will often be difficult to ascertain that
causal assumptions hold exactly, which makes it important to
develop a systematic quantitative theory.
Several variants of this question have recently attracted

considerable attention [5–13]. For example, measurement

dependence has been found to be a very strong resource.
Only about 1=15 of a bit of correlation between the source
and measurements is sufficient to reproduce all correlations
obtained by projective measurements on a singlet state
[7,9]. In turn, considering relaxations of the locality
assumption, one bit of communication between the distant
parties is again sufficient to simulate the correlations of
singlet states [5].
In this paper, we provide a unifying framework for treating

relaxations of the measurement independence and locality
assumptions in Bell’s theorem. To achieve this, we borrow
several concepts from the mathematical theory of causality, a
relatively young subfield of probability theory and statistics
[14,15]. With the aim of describing the causal relations
(rather than mere correlations) between variables that can be
extracted from empirical observations, this community has
developed a systematic and rigorous theory of causal
structures and quantitative measures of causal influence.
Our framework rests on three observations: (i) Alternative

causal structures can systematically be represented graphically
via Bayesian networks [14]. There, variables are associated
with nodes in a graph, and directed edges represent functional
dependencies. (ii) These edges can beweighted by quantitative
measures of causal influence [14,16]. (iii) Determining the
minimum degree of influence required for a classical explan-
ation of observable distributions can frequently be cast as a
computationally tractable linear program.
The versatility of this framework is demonstrated in a

variety of applications. We give an operational meaning to
the violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [17] as the minimum amount of direct causal
influence between the parties required to reproduce the
observed correlations. Considering the Collins-Gisin
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scenario [18], we show that quantum correlations are
incompatible with a classical description, even if we allow
one of the parties to communicate its outcomes. We also
show that the results in [7,9] regarding measurement-
independence relaxations can be improved by considering
different Bell scenarios. Finally, we study the bilocality
assumption [19] and show that although it defines a
nonconvex set, its relaxation can also be cast as a linear
program, naturally quantifying the degree of nonbilocality.
Bayesian networks and measures for the relaxation of

causal assumptions.—The causal relationships between n
jointly distributed discrete random variables ðX1;…; XnÞ
are specified by means of a directed acyclic graph (DAG).
To this end, each variable is associated with one node of the
graph. One then says that the Xi’s form a Bayesian network
with respect to the graph, if every variable can be expressed
as a deterministic function Xi ¼ fiðPAi; NiÞ of its graph-
theoretic parents PAi and an unobserved noise term Ni,
such that the Ni’s are jointly independent. This is the case
if and only if the probability pðxÞ ¼ pðx1;…; xnÞ is of
the form

pðxÞ ¼
Yn

i¼1

pðxijpaiÞ: ð1Þ

This identity encodes the causal relationships implied by
the DAG [14].
As a paradigmatic example of a DAG, consider a bipartite

Bell scenario [Fig. 1(a)]. In this scenario, two separated
observers, Alice and Bob, each perform measurements
according to some inputs, here represented by random
variables X and Y, respectively, and obtain outcomes,
represented by A and B. The causal model involves an
explicit shared hidden variable Λ that mediates the correla-
tions between A and B. From (1), it follows that
pðx; y; λÞ ¼ pðxÞpðyÞpðλÞ, which reflects the measurement
independence assumption. It also follows that a ¼
fAðx; λ; nAÞ, b ¼ fBðy; λ; nBÞ.We incur no loss of generality

by absorbing the local noise termsNA;NB intoΛ andwill thus
assume from now on that a ¼ fAðx; λÞ; b ¼ fBðy; λÞ for
suitable functions fA; fB. This encodes the locality
assumption. Together, these relations imply the well-known
local hidden variable (LHV) model of Bell’s theorem:

pða; bjx; yÞ ¼
X

λ

pðajx; λÞpðbjy; λÞpðλÞ: ð2Þ

Causal mechanisms relaxing locality [Figs. 1(b)–1(d)]
and measurement independence [Fig. 1(e)] can be easily
expressed using Bayesian networks. The networks them-
selves, however, do not directly quantify the degree of
relaxation. Thus, one needs to devise ways of checking and
quantifying such causal dependencies. To define a sensible
measure of causal influence, we introduce a core concept
from the causality literature—interventions [14].
An intervention is the act of forcing a variable, say Xi, to

take on some given value x0i and is denoted by doðx0iÞ. The
effect is to erase the original mechanism fiðpai; niÞ and
place Xi under the influence of a new mechanism that sets it
to the value x0i while keeping all other functions fj for j ≠ i
unperturbed. The intervention doðx0iÞ changes the decom-
position (1) given by [20]

pðxjdoðx0iÞÞ ¼
�Q

n
j≠i pðxjjpajÞ if xi ¼ x0i;

0 otherwise:
ð3Þ

Considering locality relaxations, we can now define a
measure CA→B for the direct causal influence of A into B
for the model in Fig. 1(b):

CA→B ¼ sup
b;y;a;a0

X

λ

pðλÞjpðbjdoðaÞ; y; λÞ

− pðbjdoða0Þ; y; λÞj: ð4Þ
It is the maximum shift (averaged over the unobservable Λ)
in the probability of B caused by interventions in A.
Similarly, one can define CX→B for the DAG in Fig. 1(c)
and in other situations. This measure is strictly larger than
zero for any underlying causal influence, as opposed to
variations of it, such as the widely used average causal
effect that can be null even in the presence of causal
influences [16]. We are also interested in relaxations of
measurement independence. Considering the case of a
bipartite scenario [illustrated in Fig. 1(e) and that can be
easily extended to multipartite versions], we can define the
measure

MX;Y∶λ ¼
X

x;y;λ

jpðx; y; λÞ − pðx; yÞpðλÞj: ð5Þ

This can be understood as a measure of how much the
inputs are correlated with the source, i.e., how much the
underlying causal model fails to comply with measurement
independence. In the following, we focus on the case where
pðx; yÞ ¼ pðxÞpðyÞ, as usual in a typical Bell scenario.
The linear programming framework.—Given some

observed probabilities and a particular measure of

FIG. 1 (color online). (a) LHV model for the bipartite Bell
scenario. (b) A relaxation of locality, where A may have direct
causal influence on B. (c) Another relaxation in which X may
have direct causal influence on B. (d) The most general
communication scenario from Alice to Bob. (e) A relaxation
of measurement independence. (f) The bilocality scenario for
which the two sources Λ1 and Λ2 are assumed to be independent.
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relaxation, our aim is to compute the minimum value of the
measure compatible with the observations. As sketched
below and fully detailed in the Supplemental Material [21],
this leads to a tractable linear program.
For simplicity, we consider the usual Bell scenario of

Fig. 1(a). The most general observable quantity is the joint
distribution pða; b; x; yÞ ¼ pða; bjx; yÞpðxÞpðyÞ. Since we
control the “inputs” X and Y, their distribution carries no
information, and we may thus restrict attention to
pða; bjx; yÞ. This conditional probability is, in turn, a linear
function of the distribution of Λ. To make this explicit,
represent pða; bjx; yÞ as a vector p with components pj
labeled by the multi-index j ¼ ða; b; x; yÞ. Similarly, iden-
tify the distribution ofΛwith a finite vector with components
qλ ¼ pðΛ ¼ λÞ. Then, from the discussion above, we have
that p ¼ Tq, where T is a matrix with elements
Tj;λ ¼ δa;fAðx;λÞδb;fBðy;λÞ. Conditional expectations that
include the application of a do operation are obtained via
a modified T matrix. For example, q0

j ¼ pða; bjx;
y; doða0ÞÞ ¼ T 0q for T 0

j;λ ¼ δa;a0δb;fBðy;λÞ. The measures C
and M are easily seen to be convex functions of the
conditional probabilities pða; bjx; yÞ and their variants
arising from the application of do’s—and thus convex
functions of q. Hence, their minimization subject to the
linear constraint Tq ¼ p for an empirically observed dis-
tribution p is a convex optimization problem. This remains
true if only some linear function Vp ¼ VTq (e.g., a Bell
inequality) of the distribution p is constrained. The problem
is not manifestly a (computationally tractable) linear pro-
gram (LP), since neither objective function is linear in q.
However, we establish in [21] that it can be cast as such:
Theorem 1. The minimization of the measures C and

M over models involving only one independent hidden
variable, subject to any linear observation, can be reformu-
lated as a primal LP. Its solution is equivalent to

max
1≤i≤K

hvi; Vpi; ð6Þ

where the fvigKi¼1 are the vertices of the LP’s dual feasible
region.
We highlight that (6) is a closed-form expression in the

observations Vp: It is a maximum over finitely many explicit
linear functions Vp↦hvi; Vpi. In this way, our result goes
significantly beyond previous approaches [8–11], where
generally only information about the degree of violation
of a specific Bell inequality is utilized. In the following sec-
tions, we apply our framework to a variety of applications.
Novel causal interpretation of the CHSH inequality.—

Intuitively, the more nonlocal a given distribution is, the
more direct causal influence between Alice and Bob should
be required to simulate it. We make this intuition precise by
considering the models in Figs. 1(b) and 1(c) and the
CHSH scenario (two inputs, two outputs for Alice and
Bob). For any observed distribution pða; bjx; yÞ, we
establish in [21] that

ð1=2Þmin CA→B ¼ min CX→B ¼ max ½0;CHSH�; ð7Þ

where the maximum is taken over all the eight symmetries
of the CHSH quantity [17]

CHSH ¼ pð00j00Þ þ pð00j01Þ þ pð00j10Þ
− pð00j11Þ − pAð0j0Þ − pBð0j0Þ; ð8Þ

where the last two terms represent the marginals for Alice
and Bob. The CHSH inequality stipulates that for any LHV
model, CHSH ≤ 0. Equation (7) shows that, regardless of
the particular distribution, the minimum direct causal
influence is exactly quantified by the CHSH violation.
Inspired by the communication scenario of [5] [Fig. 1(d)]

and the operational interpretation of CHSH violation given
in [6], we can also quantify the relaxation of the locality
assumption as the minimum amount of communication
required to simulate a given distribution. We measure the
communication by the Shannon entropy HðmÞ of the
message m which is sent. For a binary message, we can
use our framework to prove, in complete analogy to (7), that

minHðmÞ ¼ hðCHSHÞ ð9Þ
if CHSH > 0 and 0 otherwise. Here hðvÞ ¼ −v log2 v −
ð1 − vÞ log2ð1 − vÞ denotes the binary entropy.We note that
for maximal quantum violation CHSH ¼ 1=

ffiffiffi
2

p
− 1=2, as

produced by a singlet state, a message with HðmÞ ≈ 0.736
bits is required. This is less than the ≈0.85 bits of
communication (after compression) required by the protocol
of [5] for reproducing arbitrary correlations of a singlet.
Quantum nonlocality is incompatible with some locality

relaxations.—Given that violation of CHSH can be directly
related to relaxation of locality, one can ask whether similar
interpretations exists for other scenarios. For example, we
can consider a setting with three inputs and two outputs for
Alice and Bob and consider the causal model in Fig. 1(b).
Similar to the usual LHV model (2), the correlations
compatible with this model form a polytope. One facet
of this polytope is

hE00i−hE02i−hE11iþhE12i−hE20iþhE21i≤4; ð10Þ
where Exy ¼ hAxByi ¼

P
a;bð−1Þaþbpða; bjx; yÞ. This

inequality can be violated by any quantum state jψi ¼ffiffiffi
ϵ

p j00i þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ϵÞp j11i with ϵ ≠ 0; 1. Consequently, any
pure entangled state—no matter how close to separable—
generates correlations that cannot be explained even if we
allow for a relaxation of the locality assumption, where one
of the parties communicates its measurement outcomes to
the other.
How much measurement dependence is required to

causally explain nonlocal correlations?—The results in
Refs. [7,9] show that measurement dependence is a very
strong resource for simulating nonlocality. In fact, a mutual
information as small as IðX; Y∶λÞ ≈ 0.0663 is already
sufficient to simulate all correlations obtained by (any
number of) projective measurements on a singlet state [9].
Given the fundamental implication and practical relevance
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of increasing these requirements, we aim to find larger
values for IðX; Y∶λÞ by means of our framework. The result
of [9] leaves us with three options regarding the quantum
states: either nonmaximally entangled states of two qubits,
two-qudit states, or states with more than two parties.
Regarding nonmaximally entangled two-qubit states, we

were unable to improve the minimal mutual information.
Regarding qudits, we have considered relaxations in the
CGLMP scenario [29]—a bipartite scenario, where Alice
and Bob each have two inputs and d outcomes. The
CGLMP inequality is of the form Id ≤ 2. We have
evaluated the LP for minM in the setting of Fig. 1(e)
for various values of Id and up to d ¼ 8. The numerical
results strongly suggest that the simple relation

minM ¼ max ½0; ðId − 2Þ=4� ð11Þ

holds. Via the Pinsker inequality [30,31] and the definition
of mutual information (see Eq. (1) in [31] for further
details), (11) provides a lower bound on the minimum
mutual information IðX; Y∶ΛÞ ≥ M2log2e=2. This bound
implies that for any Id ≥ 3.214, the mutual information
required exceeds the 0.0663 obtained in Ref. [9]. Using the
results in Ref. [32] for the scaling of the optimal quantum
violation with d, one sees that this requires d ≥ 16.
However, we note that the bounds provided by the
Pinsker inequality are usually far from tight, leaving a
lot of room for improvement. Moreover, a corresponding
upper bound (obtained via the solution to the minimization
of M) is larger than the values obtained in [9] as soon as
d ≥ 5. Though this upper bound is not necessarily tight, we
highlight the fact that for d ¼ 2 it gives exactly
IðX; Y∶ΛÞ ¼ 0.0463, the value analytically obtained in [9].
Regarding multipartite scenarios, we have considered

GHZ correlations [33] in a tripartite scenario where each
party has two inputs and two outputs. We numerically
observe 0.090 ≤ IðX; Y; Z∶λÞ ≤ 0.207. This implies that
increasing the number of parties can considerably increase
the measurement dependence requirements for reproducing
quantum correlations.
Bilocality scenario.—To illustrate how our formalism

can be used in generalized Bell scenarios [19,34,35], we
briefly explore the entanglement-swapping scenario [36] of
Fig. 1(f) (see details in [21]). The hidden variables in this
scenario are independent pðλ1; λ2Þ ¼ pðλ1Þpðλ2Þ, the so-
called bilocality assumption [19].
As in Ref. [19], we take the inputs x; z and outputs a; c to

be dichotomic, while b takes four values that we decom-
pose in two bits as b ¼ ðb0; b1Þ. The distribution of
hidden variables can be organized in a 64-dimensional
vector q with components qα0;α1;β0;β1;γ0;γ1 , where αx spec-
ifies the value of a for a given x (and analogously for γ, c,
and z) and βi specifies the value of bi. Thus, together the
indices label all the deterministic functions for A, B, C
given their parents. As shown in [19], bilocality is equiv-
alent to demanding qacα0;α1;γ0;γ1 ¼ qaα0;α1q

c
γ0;γ1 , where

qacα0;α1;γ0;γ1 ¼
P

β0;β1qα0;α1;β0;β1;γ0;γ1 is the marginal for AC.
Similar to (5), a natural measure MBL of nonbilocality
quantifies by how much the underlying hidden variable
distribution fails to comply with this constraint:

MBL ¼
X

α0;α1;γ0;γ1

jqacα0;α1;γ0;γ1 − qaα0;α1q
c
γ0;γ1 j: ð12Þ

Clearly, MBL ¼ 0, if and only if bilocality is fulfilled.
However, demanding bilocality imposes a quadratic con-
straint on the hidden variables. This results in a nonconvex
set that is extremely difficult to characterize [19,34,35].
Nevertheless, our framework is still useful, as using the
marginals for a given observed distribution to constrain the
problem further, the minimization of MBL can be cast in
terms of a linear program with a single free parameter,
which is further minimized over.
As an illustration, we consider the nonbilocal distribu-

tion found in Refs. [19]. It is obtained by projective
measurements on a pair of identical two-qubit entangled
states ϱ ¼ vjΨ−ihΨ−j þ ð1 − vÞI=4. This distribution vio-
lates the bilocality inequality B ¼ ffiffiffiffiffijIjp þ ffiffiffiffiffiffijJjp

≤ 1 giving
a value B ¼ ffiffiffi

2
p

v. Using our framework, we numerically
observe MBL ¼ maxð2v2 − 1; 0Þ. Thus, for this specific
distribution (and up to numerical precision), MBL ¼
B2 − 1, so there is a one-to-one correspondence between
the violation of the bilocality inequality and the minimum
relaxation of the bilocality constraint required to reproduce
the correlations. This assigns an operational meaning to B.
Conclusion.—In this work, we have revisited nonlocality

from a causal inference perspective and provided a linear
programming framework for relaxing the measurement
independence and locality assumptions in Bell’s theorem.
Using the framework, we have given a novel causal
interpretation of violations of the CHSH inequality and
shown that quantum correlations are still incompatible
with classical causal models even if one allows for the
communication of measurement outcomes. This implies
that quantum nonlocality is even stronger than
previously thought. Also, we have shown that the minimal
measurement dependence required to simulated nonlocal
correlations can be improved by considering different Bell
scenarios. Finally, we showed how our framework can be
extended to treat the nonconvex problem arising in the
bilocality scenario. In particular, based on numerical
evidence for a specific class of nonbilocal distributions,
we have conjectured an operational meaning for the
bilocality inequality.
In addition to these results, we believe the generality of

our framework motivates and, more importantly, provides a
basic tool for future research. For instance, it would be
interesting to understand how our framework can be
generalized in order to derive useful inequalities in the
context of randomness expansion [10]. Another natural
possibility would be to look for a good measure of genuine
multipartite nonlocality [37]. Finally, it would be
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interesting to understand how our treatment of the bilo-
cality problem could be generalized and applied to the
characterization of the nonconvex compatibility regions of
more complex quantum networks [34,38].
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