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We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial
dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i) a
many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy,
and the eigenstate thermalization hypothesis (ETH) is violated, and (ii) a delocalized phase, in which
eigenstates have volume-law entanglement and obey the ETH. The MBL phase exhibits logarithmic in time
growth of entanglement entropy when the system is initially prepared in a product state, which
distinguishes it from the delocalized phase. We propose an effective model of the MBL phase in terms
of an extensive number of emergent local integrals of motion, which naturally explains the spectral and
dynamical properties of this phase. Numerical data, obtained by exact diagonalization and time-evolving
block decimation methods, suggest a direct transition between the two phases.
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Introduction.—The dynamics of closed quantum many-
body systems driven out of equilibrium has been the subject
of intense investigation over the past decade [1,2]. Many-
body systems broadly fall into two classes with distinct
dynamical properties: ergodic systems, which reach
local thermal equilibrium as a result of the Hamiltonian
evolution, and nonergodic ones which fail to thermalize.
Thermalization in isolated ergodic systems can be linked to
the properties of individual many-body eigenstates that are
locally thermal [3–5].
While a complete classification of nonergodic systems

remains an open problem, it has recently been established
that many-body localization [6–17] provides a robust
mechanism of ergodicity breaking in systems with
quenched disorder. Many-body localized (MBL) systems
are characterized by an extensive number of quasilocal
integrals of motion [13,14], which strongly restrict quan-
tum dynamics and prevent energy transport and thermal-
ization. MBL systems have universal dynamical properties,
such as the logarithmic-in-time growth of entanglement
entropy for initial product states [9,11–15], in contrast to
ergodic and Bethe-ansatz-integrable systems where entan-
glement spreads linearly in time [18–20].
In this Letter, we study the response of MBL systems to

periodic driving, which provides a natural experimental
probe of both solid-state and cold atoms systems. The ac
conductivity of single-particle insulators is conventionally
described by the linear-response Mott formula, which
predicts a finite absorption at any driving frequency
[21]. This suggests that weak periodic driving heats up
the system and thermalizes it. On the other hand, a MBL
system can be viewed as a collection of localized degrees of

freedom with exponentially decaying interactions [13,14];
therefore, one might expect that these degrees of freedom
perform nearly independent periodic motion, and a system
stabilizes in a highly nonthermal steady state. In what
follows, we show that the latter possibility is realized, and
MBL persists at weak driving. In contrast, strong driving
does delocalize the system, leading to heating and
thermalization.
The properties of periodically driven systems with a

Hamiltonian Hðtþ TÞ ¼ HðtÞ are determined by the uni-
tary Floquet operator F̂, i.e., the evolution operator over
one period:

F̂ ¼ T exp
�
−i

Z
T

0

HðtÞdt
�
; ð1Þ

where T exp denotes a time-ordered exponential. In
the eigenstate basis jψαi, F̂ takes the form F̂ ¼P

D
α¼1 e

−iθα jψαihψαj, where D is the Hilbert space dimen-
sion, and the quasienergies θα can be chosen to lie in the
interval ½0; 2πÞ. One can introduce an effective Floquet
Hamiltonian HF as F̂ ¼ e−iHF , with eigenstates jψαi and
eigenvalues θα þ 2πnα, with nα integer.
We consider a generic class of periodically driven 1D

models with quenched disorder, and find that, as a function
of driving strength, two distinct phases are realized. At
weak driving, the system remains in the MBL phase,
characterized by the Poisson statistics of quasienergy
levels. The Floquet eigenstates the obey area law for
entanglement entropy [22] (that is, entanglement entropy
of half the system remains smaller than a constant as system
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size L → ∞), similar to the ground states in gapped
systems. Further, the eigenstates with similar quasienergies
typically have different local properties; thus, the eigenstate
thermalization hypothesis (ETH) [3–5] breaks down. At
some critical driving strength, the system undergoes a
transition into a delocalized (ergodic) phase. Here the
Floquet eigenstates have an extensive, volume-law entan-
glement; the quasienergy levels repel, and their statistics is
described by the circular orthogonal ensemble (COE). The
ETH holds in this phase, and the Floquet eigenstates
have identical local properties, described by the infinite-
temperature Gibbs ensemble.
The two phases can furthermore be distinguished by

their dynamical properties, e.g., the time evolution of the
system prepared in a product state, which can be efficiently
simulated numerically. In the MBL phase, the states retain
the local memory of the initial state, and local observables
at long times are correlated with their initial values. This
behavior reflects the presence of emergent local integrals of
motion [13,14], which we explicitly construct following
Ref. [23] (see also Ref. [24]). In contrast, in the delocalized
phase, local observables relax to their “equilibrium” values
at long times, which are given by the infinite-temperature
Gibbs ensemble.
Our results complement previous works [25–28], which

studied driven translationally invariant systems, as well as
Ref. [29], where the behavior of disordered many-body
systems under local driving was studied.
Model.—Our system is a 1D spin 1=2 chain with open

boundary conditions. Following Refs. [25,26], we consider
a driving protocol in which the system’s Hamiltonian is
periodically switched between two operators, H0 and H1,
both of which are sums of local terms. An example of a
disordered Hamiltonian H0, which describes an MBL
phase and acts for time T0, is

H0 ¼
X
i

hiσ
z
i þ Jzσ

z
iσ

z
iþ1; ð2Þ

where random fields hi are uniformly distributed in the
interval ½−W;W�. The eigenstates of H0 are product states.
As a delocalizing Hamiltonian H1 we choose

H1 ¼ Jx
X
i

σxi σ
x
iþ1 þ σyi σ

y
iþ1; ð3Þ

which acts for time T1 such that the driving period is
T ¼ T0 þ T1. The Floquet operator is given by

F̂ ¼ e−iH0T0e−iH1T1 : ð4Þ
The protocol describes a MBL system periodically
“kicked”with a delocalizing perturbationH1. An important
difference compared to the periodically kicked rotor model
[30–36] is that in our model the one-body Hilbert space has
a finite dimension. We fix Jx ¼ Jz ¼ 1=4, T0 ¼ 1,
W ¼ 2.5, and tune the strength of the kick, T1, observing

a transition at critical T�
1 between the MBL phase (small

T1 < T�
1) and the ergodic phase (T1 > T�

1) [37].
Properties of Floquet eigenstates.—We first explore the

properties of the Floquet eigenstates using exact diagonal-
ization (ED). By computing the consecutive quasienergy
gaps δα ¼ θαþ1 − θα, we characterize the level statistics
by their ratio r ¼ minðδα; δαþ1Þ=maxðδα; δαþ1Þ [8,27]. The
averaged value of r serves as a probe of ergodicity
breaking: it allows one to distinguish between the
Poisson and Wigner-Dyson level statistics. In Fig. 1 we
show hri averaged over all quasienergy spacings and over
1000 disorder realizations, for several system sizes. At
small kick period T1, hri becomes increasingly close to the
Poisson-statistics value hriPOI ≈ 0.386 as the system size is
increased. This indicates the absence of level repulsion and
suggests that ergodicity is broken at small T1 and the
system is in the MBL phase. At large T1, parameter hri is
approximately equal to 0.53, which is close to the COE
value, hriCOE ≈ 0.527 [27,38]. This suggests that at large
T1 the system delocalizes. The hri curves for different
system sizes cross at T�

1 ≈ 0.9, suggesting a phase transition
between MBL and ergodic phases in the thermodynamic
limit. A drift of the crossing point towards smaller T1 is
observed, similar to the time-independent case [10]. This
behavior should be contrasted with periodically kicked
ergodic spin chains [27], where the ergodicity breaking
regime was found at a fixed L and sufficiently small
L-dependent T0, T1; in this case, ergodicity was found
to be restored in the thermodynamic limit, L → ∞.
To further distinguish the two phases, we study the

entanglement properties of the Floquet eigenstates.
Figure 2 shows disorder- and ensemble-averaged von
Neumann entropy hSi of the Floquet eigenstates, for the
symmetric bipartition, plotted as a function of T1. The
markedly different scaling of hSi at small and large values
of T1 lends further support to the existence of two phases.
At T1 ≲ T�

1, hSi is much smaller than the value expected for

FIG. 1 (color online). Disorder-averaged level statistics param-
eter hri as a function of the “kick” strength T1. At small values of
T1, hri ≈ 0.386, indicating Poisson statistics of quasienergy
levels (no level repulsion). At larger T1 the system undergoes
a transition into a delocalized phase with hri ≈ 0.53, consistent
with the COE [27]. Data are for system sizes L ¼ 10; 12; 14, and
averaging is performed over 1000 disorder realizations.
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random vectors in the Hilbert space, STh ≈ L=2 ln 2 [39],
which signals ergodicity breaking. Moreover, at T1 ≲ 0.6
the entanglement entropy grows very weakly with system
size, consistent with area-law in 1D. On the contrary, at
large T1 > T�

1, hSi approaches STh, indicating that almost
all eigenstates are essentially random vectors in the Hilbert
space, as expected in the ergodic phase.
It is also instructive to study the fluctuations of entan-

glement entropy, as they have been shown to provide a
useful probe of the MBL-delocalization transition in time-
independent models [40]. The disorder-averaged fluctua-
tions of S, defined as ΔS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðS − hSiÞ2i

p
are expected to

be small deep in the delocalized phase, as well as in the
MBL phase: in the former case, almost all eigenstates are
highly entangled, with S ≈ STh, with small fluctuations
around this value, while in the latter case, S obeys the area
law and is therefore small, as are its state-to-state fluctua-
tions. In contrast, at the transition S has a broad distribution
[13,40], and therefore its fluctuations are maximal. Thus,
the localization-delocalization transition can be detected by
the location of the peak in ΔS. Figure 2(inset) shows ΔS as
a function of T1. Entanglement fluctuations ΔS exhibit a
maximum at T1 ≈ 1.1 that roughly agrees with the T�

1 value
found from analyzing level statistics; further, we observe a
slight drift of the maximum with the system size, similar to
the previous study of the static case [40]. We attribute the
difference between the position of the maximum in ΔS and
value T1 determined from the level statistics, to the finite-
size effects. We have also directly tested the ETH and its
violation in the MBL phase in the Floquet eigenstates,
finding behavior consistent with the existence of two
phases [41] (see also Ref. [42], where the ETH for driven
ergodic systems was tested).
Dynamics.—We next study the dynamical properties of

the model [Eqs. (2) and (3)]. We consider a standard
quantum quench protocol: the system is initially prepared

in the Néel (product) state jψ0i of spins σzi ¼ �1 at t ¼ 0,
and this state is evolved under the Hamiltonian (2), (3) at
t > 0. This protocol is particularly easy to simulate using
Krylov subspace projection methods [43] or the time-
evolving block decimation (TEBD) [44] method, both of
which allow us to access larger systems beyond ED due to
the sufficiently slow growth of entanglement in the MBL
phase. For the TEBD algorithm we use a second order
Trotter decomposition with time step Δt ¼ 0.1. The growth
of the bond dimension is controlled by requiring the
neglected weight to be less than 10−7 at each Schmidt
decomposition.
Local observables: We first focus on the evolution of

local observables, and compute the expectation value of the
spin on a given site I, σzIðtÞ, and its long-time limit hσzIð∞Þi
[23,45,46]. Figure 3 illustrates the time evolution σzIðtÞ for
the Néel initial state jψ0i and site I ¼ 1, and for system
sizes ranging from L ¼ 10–14 (obtained via ED), L ¼
16; 18 obtained using Krylov subspace projection, and L ¼
24; 30 obtained using TEBD. We find that the on-site
magnetization remains finite at very long times even for the
largest systems without any visible finite-size effects. This
indicates that the MBL phase remains stable in the
thermodynamic limit.
The long-time average hσzIð∞Þi can be expressed

in terms of the Floquet eigenstates as hσzIð∞Þi ¼
limt→∞ð1=tÞ

R
t
0hψ0jσzIðt0Þjψoidt0, which in terms of the

eigenstates jψαi reads
P

αhψαjσzI jψαijhψ0jψαij2. The
long-time value hσzIð∞Þi, calculated using ED and aver-
aged over 6000 disorder realizations, is illustrated in Fig. 3
(inset). This quantity behaves differently in the two phases:
at T ≲ T�

1, hσzIð∞Þi is positive and weakly dependent on the
system size, which shows that in the MBL phase the local
memory of the initial state is retained. Deep in the ergodic
phase, at T1 ≫ T�

1, hσzIð∞Þi → 0, reflecting the decay of

FIG. 2 (color online). Averaged entanglement entropy hSi and
its fluctuations hΔSi (inset) as a function of T1. The scaling of
entropy and its fluctuations with system size L are consistent with
the existence of a MBL and a delocalized phase for small and
large T1, respectively.

FIG. 3 (color online). Dynamical properties: Decay of mag-
netization at a given site I ¼ 1 for the Néel initial configuration.
Inset: Long-time magnetization remains nonzero in the MBL
phase as the system size is increased. In the delocalized phase,
magnetization decays to zero at long times. Averaging was
performed over 6000 disorder realizations.
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the initial magnetization and therefore a loss of the memory
of the initial state.
Entanglement growth: Finally, we explored the spread-

ing of entanglement following a quantum quench, known
to be a sensitive probe of many-body localization: in the
MBL phase, entanglement grows logarithmically in time
[9,11–14], while in the ergodic phase, as well as in
Bethe-ansatz-integrable systems, it grows linearly in time
[18–20]. The disorder-averaged entanglement entropy as a
function of time, calculated for fixed T1 ¼ 0.4 and the
symmetric bipartition, is shown in Fig. 4. Averaging was
performed over 6000 disorder realizations. Entanglement
initially rises from zero, followed by a plateau and a
logarithmic growth for several decades in time,
hSðtÞi ∝ lnðtÞ. This behavior is qualitatively similar to that
found in the MBL phase in systems with time-independent
Hamiltonians [11–14], which gives further support for the
existence of the MBL phase in driven systems with strong
disorder.
Local integrals of motion and effective description of the

driven MBL phase.—In order to understand the spectral and
dynamical properties of the MBL phase observed in the
numerical simulations, we propose an effective model of
this phase. Intuitively, a MBL phase is stable because weak
driving only induces periodic motion of localized degrees
of freedom, but not transitions between them. Thus, we
expect that an extensive number of local integrals of motion
which is known to exist in static MBL phase [13,14],
persists under driving. To define the integrals of motion, we
first note that the area-law entanglement of the Floquet
eigenstates suggests that they can be obtained from the
product states (in the σzi ¼ �1 basis) by a quasilocal unitary
transformation U which brings the Floquet operator into a
diagonal form in that basis: UF̂U† ¼ F̂diag. Since L of the
operators σzi commute with F̂diag, we can introduce a set of
L “pseudospin” operators τzi ¼ U†σziU. These operators

commute with the Floquet operator ½F̂; τzi � ¼ 0, as well as
with each other ½τzi ; τzj� ¼ 0. Operators τzi have eigenvalues
�1 and therefore satisfy the relation ðτzi Þ2 ¼ 1; they can be
viewed as z components of some “effective” spins. We
emphasize that the operators τzi can be introduced for any
driven system, but the special property of the MBL phase is
that their support is localized near site i, and they affect
remote physical degrees of freedom exponentially weakly.
In terms of τ operators, the operator F takes a simple
form, as it can only depend on τzi operators and their
products (but not on the τxi ; τ

y
i operators). It is convenient to

represent F̂ as

F̂ ¼ e−iHeffðfτzi gÞ; ð5Þ
where HeffðfτzigÞ is a real function of operators τzi . (Such a
representation takes into account the fact that eigenvalues
of F̂ have the absolute value one). Further, since ðτzi Þ2 ¼ 1,
Heff can generally be written as

HeffðfτzigÞ ¼
X
i

~hiτ
z
i þ

X
ij

Jijτ
z
i τ

z
j þ

X
ijk

Jijkτ
z
i τ

z
jτ

z
k þ � � �

ð6Þ

It is natural to assume that in the MBL phase the couplings
J between remote effective spins decay exponentially with
distance, similar to the static case [13,14].
The effective model introduced above naturally explains

the spectral and dynamical properties of the MBL phase
established numerically, e.g., the absence of decay of the
on-site magnetization at long times and the logarithmic
growth of entanglement, which directly follows from
Eqs. (5) and (6) and the exponential decay of interactions
between remote effective spins [12–14]. To provide further
justification for the effective description [Eqs. (5) and (6)],
we have also numerically constructed [41] the local
integrals of motion following Ref. [23]. These form an
extensive set, although they are not identical to τzi operators.
Discussion.—We have demonstrated the existence of two

dynamical regimes in periodically driven MBL systems.
We found that weak driving does not destroy MBL
systems. In this regime, localized degrees of freedom
(effective spins) perform periodic motion, and driving does
not induce transitions between distant effective spins, even
though they are interacting [13,14]. This indicates that
MBL systems do not absorb energy under weak driving,
and signals the inapplicability of linear response theory
(Mott’s formula) in driven MBL systems, which predicts
finite absorption and heating. Further, there exists a finite
driving threshold above which the system delocalizes, and
ergodicity is restored. Our study shows that periodic
driving, which is a common tool in both solid-state and
cold atoms systems, provides a new experimental probe of
MBL systems, and in particular allows one to induce and
characterize the MBL-delocalization transition.

FIG. 4 (color online). Disorder-averaged entanglement entropy
following a quantum quench, for the Néel initial state. Data for
system sizes L ¼ 12; 14 were obtained by ED, for L ¼ 16; 18
using Krylov subspace projection, and L ¼ 24; 30 using TEBD.
Averaging is performed over 6000 disorder realizations.
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Our results indicate that many-body localization does
not rely on global conservation laws, and a complete set
of local integrals of motion exists even in the absence of
energy conservation. This implies that the dynamics of
Floquet MBL systems is described by an effective quasi-
local time-independent Hamiltonian Heff , which is itself
many-body localized. This is in sharp contrast to the
ergodic phase, where the Floquet Hamiltonian does not
have a quasilocal representation [27–29]. An interesting
open question is whether the Magnus expansion, which
is a high-frequency expansion for the effective Floquet
Hamiltonian (see Ref. [47] for a recent overview), con-
verges in the MBL phase.
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Note added.—Recently, we became aware of a related
work [48].
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