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We consider two-dimensional systems in which edge states coexist with a gapless bulk. Such systems
may be constructed, for example, by coupling a gapped two-dimensional state of matter that carries edge
states to a gapless two-dimensional system in which the spectrum is composed of a number of Dirac cones.
We find that, in the absence of disorder, the edge states could be protected even when the two systems are
coupled, due to momentum and energy conservation. We distinguish between weak and strong edge states
by the level of their mixing with the bulk. In the presence of disorder, the edge states may be stabilized
when the bulk is localized or destabilized when the bulk is metallic. We analyze the conditions under which
these two cases occur. Finally, we propose a concrete physical realization for one of our models based on
bilayer Hg(Cd)Te quantum wells.
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Introduction.—The classification and realization of topo-
logical states of matter are among the main themes in
modern condensed matter physics [1–3]. Of particular
interest are topological insulators and topological super-
conductors, which have drawn a great deal of attention
over the past few years [4–14]. The bulk of these states is
gapped, but the edge is commonly gapless. The gapless
edge modes are protected from backscattering and locali-
zation either by chirality or by symmetry.
In this work, we present several examples of

two-dimensional models that simultaneously host one-
dimensional gapless modes on the edge and are gapless
in the two-dimensional bulk. The edge states possess
unique properties that distinguish them from nontopolog-
ical edge states. Most notably, they are either chiral or
helical and intimately related to properties of the bulk. In
the absence of disorder, these models all share similar
spectral and transport characteristics, showing distinct bulk
and edge contributions that do not mix. In contrast, the
effect of disorder unravels the difference between them. In
some of the models, disorder stabilizes the edge modes and
decouples them from the bulk, while in others it completely
mixes the two. Similarly, the different nature of the
different models is revealed when we introduce weak
perturbations that open energy gaps in the spectrum. We
provide concrete Hamiltonians based on coupling a gapless
phase to a topological phase—for example in a bilayer
system—and analyze their spectral and transport proper-
ties. Beyond that, we present a concrete physical realization
based on a bilayer Hg(Cd)Te quantum well. Note that the
systems we consider share the lack of bulk energy gaps
with Weyl semimetals and nodal superconductors [15,16],
but these systems are distinguished from them by being
two dimensional and by having no topological protection
against the gapless nature of the bulk.

The edge properties in gapped topological states of
matter can be studied through the local density of states
(LDOS) [3,11–13]. At energies smaller than the bulk
energy gap, the LDOS is nonzero at the edge and decreases
exponentially as a function of the distance from the edge.
Because of the absence of a bulk gap, this is not the case for
the systems we consider, and we therefore have to employ
different methods for studying the edge. For the clean case,
we study a cylindrical geometry in which the lattice
momentum parallel to the edge, k∥, commutes with the
Hamiltonian. We find two types of edge states, which we
call strong and weak. Strong edge states carry a momentum
k∥ and an energy ϵðk∥Þ for which there are no bulk states.
Consequently, their wave functions are exponentially
localized near the edge, with the localization length being
inversely proportional to the bulk gap at k∥. Weak edge
states occur when, for all values of k∥ and energies ϵðk∥Þ for
which there are states at the edge, there are also states in the
bulk. The edge states then hybridize with the bulk states,
and their wave functions are not exponentially localized.
We find that the “strength” of the edge mode depends on
the orientation of the edge.
The edge states are also reflected in transport

[3,9–12,14]. We distinguish between edge versus bulk
transport by studying transport in devices of two terminals
with both periodic and hard wall boundary conditions. This
method is also useful in the presence of disorder, where
states are not characterized by momentum. Generally, in
gapped phases with a nontrivial topological index, edge
state transport is robust as long as the relevant energy scales
for transport are smaller than the bulk gap. Remarkably, for
the systems we consider, the bulk gap vanishes, and yet the
edge state transport may still be robust. In particular, we
find that disorder may even stabilize the edge state
transport.
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The effect of disorder on the systems we consider may be
inferred from the effect of a translationally invariant
perturbation that opens a gap in the bulk spectrum. Such
a perturbation makes the system acquire a well-defined
topological index. When the topological index is a Chern
number whose value does not depend on the perturbation
that opens the gap, the gapless phase is a transition between
two insulating phases with the same Chern number. Then,
in the presence of disorder, the bulk states may become
localized and the edge states stabilize. In contrast, when the
value of the Chern number depends on the sign of the
perturbation, then the gapless phase separates topologically
distinct insulating phases and the phase diagram in the
space of disorder and gap-opening perturbation must
contain a critical line where the bulk states remain
delocalized and the edge states disappear. Away from
the critical line, the system is a well-defined Chern
insulator. For cases where the topological index is not a
Chern number, the localization properties of the bulk and
edge states depend on the symmetries of the specific model.
We now introduce four models that share the same

behavior in the absence of disorder—namely, a coexistence
of edge states and gapless bulk—but strongly differ away
from that point. The models we consider are based on a
designed coupling between a gapped two-dimensional
topological phase H1 and a gapless two-dimensional phase
H2. The simplest example would be a bilayer system in
which the two layers are described by the Hamiltonians
H1; H2 and are tunnel coupled by Hc. The combined
Hamiltonian can then be written as

H ¼
�
H1 Hc

H†
c H2

�
: ð1Þ

Here, the topological phase H1 is an insulator or a super-
conductor with a nontrivial topological index. For simplic-
ity, we assume that the gap ofH1 is the largest energy scale.
The Hamiltonian H2 is gapless, having, for example, a
Dirac spectrum. The coupling Hc is chosen such that the
full Hamiltonian remains gapless. The different blocks
should be combined such that the full Hamiltonian is
irreducible, and hence it belongs to a symmetry class,
according to Ref. [1]. In general, the symmetry class of
the full Hamiltonian is given by the minimal symmetry of
H1 and H2, although, by fine-tuning the parameters, the
resulting Hamiltonian may accidentally obey additional
symmetries.
In the first three models, H1 describes a quantum Hall

state with a nonzero Chern number, while H2 describes
three gapless phases that follow three different symmetries.
As a consequence of the different symmetries, the effect of
disorder on the three systems is markedly different. Models
I and II show the behavior of a system where the value of
the Chern number is independent or dependent on the gap-
opening perturbation, respectively. Model III shows that the

symmetries of the full Hamiltonian determine its behavior,
even when the building blocks H1 and H2 have different
localization properties. The fourth model belongs to a
different topological class but has the advantage of being
experimentally accessible in a bilayer Hg(Cd)Te quantum
well [9,10].
Model I.—A gapped Chern insulator coupled to a two-

dimensional Dirac metal. For the topological part, H1, we
take the Qi-Wu-Zhang Hamiltonian [17] of the quantum
anomalous Hall effect,

H1 ¼
X
k

½ϵðkÞ − ½t0ðcos kx þ cos kyÞ − μ�σz

þv1ðσx sin kx þ σy sin kyÞ�; ð2Þ

where ϵðkÞ ¼ t1ð1 − cos kx − cos kyÞσ0 is the kinetic
energy and the σ’s are the Pauli matrices in spin space.
Here and in the following, we set the lattice constant to
a ¼ 1 and t0 ¼ 1, expressing all other Hamiltonian param-
eters relative to these scales. The model belongs to
symmetry class A and has a nonzero Chern number for
0 < μ < 2. For the gapless part, we use H2 ¼P

kv2ðσx cos kx þ σz sin kyÞ, which contains four Dirac
cones in its spectrum. Notice that this model obeys effective
time-reversal, particle-hole, and chiral symmetries which
all square to unity: T ¼ σxK, P ¼ σzK, and C ¼ σy,
respectively. Therefore, it belongs to the class BDI [1],
which is topologically trivial in two spatial dimensions.
Finally, we take Hc ¼ t

P
kðσ0 þ σxÞ for the coupling

Hamiltonian. In fact, for any Hc with a zero determinant,
the full Hamiltonian remains gapless. Solving for its
spectrum in a cylindrical geometry, we find weak edges
when the boundary is along the y direction or spans an
angle of � arctanð0.5Þ with the x axis. The strong edge
states appear for all other boundary orientations.
The band structure of the system with open boundary

conditions in the y direction are shown in Fig. 1(a). The red
(green) points denote right (left) propagating edge states
whose wave functions decay exponentially into the bulk
[Fig. 1(b)]. The zero modes in the bulk coexist with well-
localized chiral edge states. In contrast, the spectrum and
typical edge states of a system with open boundary
conditions in the x direction are shown in Figs. 1(c) and
1(d). The red points denote edge states that hybridize with
the bulk. We find numerically that the local density of states
near the edge is larger than in the bulk (not shown), but
the latter does not decay to zero at large distances from
the edge.
Adding a mass term mσy to H2 opens a bulk gap. This

term breaks both the P and C symmetries of H2 but leaves
T intact. Hence, the gapped version of H2 belongs to
class AI in the tenfold classification [1,2], which is also
topologically trivial in two spatial dimensions. The full
Hamiltonian, for v1 ≠ v2, is then a class A Chern insulator
with a nonzero Chern number that is independent of the
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sign of m, so it belongs to the first class of models
mentioned in the Introduction. Therefore, the system has
to have chiral gapless edge states as well as a gapped bulk,
independent of the orientation of the edge. The weak edge
states must therefore be stabilized by the appearance of a
small mass term. In fact, the same holds for disorder—the
full Hamiltonian belongs to class A [1,2], in which the bulk
states become localized. Because of the nonzero Chern
number, the edge states cannot disappear and must there-
fore be stabilized by disorder. To confirm this expectation,
we numerically analyze two-terminal transport in the
system. All transport simulations are performed using
the KWANT code [18]. We discretize the Hamiltonian on
a square lattice of L ×W sites and attach ideal leads in the x
direction. This enables us to compute the scattering matrix

S ¼
�
r t
t0 r0

�
; ð3Þ

which we use to determine the conductance G=G0 ¼ Trt†t,
G0 ¼ e2=h in the low bias voltage, low temperature limit.
In the y direction, we either use hard wall boundary
conditions (Hall bar geometry) or apply periodic boundary
conditions to the states, ψðx; 0Þ ¼ ψðx;WÞ, to access only
the bulk contribution to transport (Corbino geometry). Here
and in all other models, disorder is introduced as a random

variation of the Fermi energy, drawn independently for
each lattice site from the uniform distribution ½−δ; δ�. As
seen in Fig. 2(b), when the disorder strength δ increases, the
conducting bulk states originating from H2 localize, leav-
ing behind only the quantized conductance of the edge.
The phase diagram is obtained by performing transport
simulations with periodic boundary conditions and in the
presence of a mass term [Fig. 2(a)]. Starting from the
gapless point, m ¼ δ ¼ 0, both the addition of a mass term
and disorder drive the system into a Chern insulating phase
with C ¼ 1.
Model II.—A gapped Chern insulator coupled to a Chern

insulator at its critical point. In this model, we keep H1 as
before, but replace H2 by a Hamiltonian of a quantum Hall
state at the transition between two Chern numbers. This
Hamiltonian is nothing but the Hamiltonian appearing in
Eq. (2) with σz → −σz and μ ¼ 2. Here, the gapped H2

belongs to class A with a Chern number of either zero or
−1. Therefore, the full Hamiltonian is a class A Chern
insulator with a Chern number changing from C ¼ 0 to
C ¼ 1. In contrast to model I, here the edge states disappear
as disorder is introduced since the system enters a C ¼ 0
phase. The phase diagram of this model is shown in the
Supplemental Material [20].
Model III.—A gapped Chern insulator coupled to a

quantum spin Hall state at its critical point. In the previous
models, both the gapped and the gapless Hamiltonian were
subjected to localization by disorder. Now we choose anH2

that does not get localized by weak disorder. Interestingly,
we find that its coupling to the gapped Chern insulator
makes it amenable to localization. We set H2 as the
Bernevig-Hughes-Zhang (BHZ) model for the quantum
spin Hall effect [9],

H2 ¼
�

hðkÞ ΓðkÞ
Γ†ðkÞ h�ð−kÞ

�
; ð4Þ

with

(a) (b)

(c) (d)

FIG. 1 (color online). Band structure and edge state wave
functions of model I for different edge orientations. Edges along
the y direction in (a) and (b): Localized edge states (red, green)
coexist with zero modes in the bulk (blue). Edges along the x
direction in (c) and (d): Because of energy and momentum
overlap, hybridized edge states (red) coexist with the bulk states.

FIG. 2 (color online). (a) Disorder averaged bulk conductance
of model I as a function of disorder strength δ and the gap-
opening parameter m. Chern numbers of the two phases are
shown. (b) Average conductance G=G0, for m ¼ 0, as a function
of δ, for periodic (red line) and hard wall (blue line) boundary
conditions; see Ref. [19] for simulation parameters.
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hðkÞ ¼ ½M0 þ 2M2ð1 − cos kx − cos kyÞ�σz þ Aσx sin kx

þ ½C0 þ 2C2ð1 − cos kx − cos kyÞ�σ0 − Aσy sin ky;

ΓðkÞ ¼ Δðσ0 sin kx þ iσz sin kyÞ − iΔ0σy; ð5Þ

where the σi’s act in the subspace of the E andH orbitals of
the BHZ model. We chooseM0 such thatH2 is in a metallic
region between two nontrivial quantum spin Hall phases
(symmetry class AII). For the full model, we take H1 as in
Eq. (2), and a simple coupling Hamiltonian,

Hc ¼ t

�
1 i 1 i
1 i 1 i

�
: ð6Þ

Similar to Figs. 1(a) and 1(b), in the absence of disorder,
bulk and edge modes coexist in the spectrum [20]. While
H2 is time-reversal symmetric, allowing for the existence of
metallic phases in the presence of disorder, the coupled
model belongs to class A, where weak disorder leads to
localization. Seemingly, the phase diagram in the space of
M0 and disorder strength δ, depicted in Fig. 3(a), shows a
metallic phase at finite disorder strength, reminiscent of
that present in the BHZ model. A conductance scaling
analysis [Fig. 3(b)] shows that it is metallic only in the
decoupled case. When the coupling is turned on, the
conductance decreases with system size, showing that
the presence of the conducting region is caused by the
finite size of the system. In accordance with Fig. 2(a), as the
disorder strength is increased, the bulk states localize,
leaving behind only the quantized conductance contribu-
tion of the edge states. This exemplifies the fact that both
the topological and the localization properties depend on
the symmetry class of the full Hamiltonian.
Model IV.—A gapped quantum spin Hall phase coupled

to a quantum spin Hall phase at its critical point. We
now consider both H1 and H2 to be BHZ models, Eqs. (4)
and (5), with different mass terms, M0;1 and M0;2, respec-
tively. We set H1 to be in a topological phase and H2 in a
metallic region. This model can be directly implemented

experimentally, for example with two coupled Hg(Cd)Te
quantum wells, as proposed in Ref. [24]. Most directly,
this model may be realized in such systems when one of the
quantum wells is grown with a critical thickness [25]
while the other well is chosen to be in a topologically
nontrivial phase. Remarkably, the system may be driven
to the gapless point (see Ref. [20]) by the application of
voltage on the front and back gates even when the
thickness of the two wells does not conform to this
requirement.
We choose a coupling Hamiltonian Hc ¼ tðσ0 þ σzÞτ0,

found in Ref. [24], to describe the experimentally accessible
parameter regime. The Pauli matrices σ describe the space
of theE andH orbitals, and τ parametrizes the spin degree of
freedom. In the absence of disorder [20], we find features
similar to the previous models, the system simultaneously
hosting gapless modes in the bulk and on the edge. Like in
model III, when M0;2 is changed the bulk becomes insulat-
ing, but this time it is characterized by a different invariant,
belonging to Z2 instead of the Z valued Chern number.
The disordered case also shows a behavior different from
the previous models. Since the full Hamiltonian belongs to
class AII, weak antilocalization leads to the formation of a
metallic phase at finite disorder strength; see Fig. 4(a). This
is confirmed by the scaling analysis of Fig. 4(b). The
experimental signature of this phase is the coexistence of
helical edge modes and conducting bulk, which can be
verified experimentally by performing conductance mea-
surements in three-terminal deviceswith polarized leads.We
elaborate on the experimental setup in the Supplemental
Material [20].
Summary.—We have suggested a route to realizing

unusual two-dimensional topological phases that simulta-
neously host gapless modes in the bulk and on the edges.
We have found that the behavior of these phases in the
presence of disorder can be extracted from the clean limit
by analyzing their topological properties in the presence
of an infinitesimal bulk gap. Finally, we have proposed a
concrete physical realization of one such model, based on
double Hg(Cd)Te quantum wells.

FIG. 3 (color online). (a) Disorder averaged bulk conductance
of model III, as a function of M0 and disorder strength δ.
(b) Average bulk conductance for M0 ¼ −1 and δ ¼ 0.95, as a
function of the system size L for different coupling strengths. The
conducting region around δ ¼ 1 becomes localized as the system
size is increased. See Ref. [23] for simulation parameters.

FIG. 4 (color online). (a) Disorder averaged bulk conductance
of two coupled BHZ models, as a function of disorder strength δ
and M0;2. (b) Average bulk conductance for δ ¼ 1 and
M0;2 ¼ −1.47, as a function of the system size L for different
couplings t. See Ref. [26] for simulation parameters.
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