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We provide an interpretation of entanglement based on classical correlations between measurement
outcomes of complementary properties: States that have correlations beyond a certain threshold are
entangled. The reverse is not true, however. We also show that, surprisingly, all separable nonclassical
states exhibit smaller correlations for complementary observables than some strictly classical states. We use
mutual information as a measure of classical correlations, but we conjecture that the first result holds also
for other measures (e.g., the Pearson correlation coefficient or the sum of conditional probabilities).
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Two properties of a quantum state are called comple-
mentary if they are such that, if one knows the value of one
property, all possible values of the other property are
equiprobable. More rigorously, let jaii represent the eigen-
states corresponding to possible values of a nondegenerate
property A ¼ P

ifðaiÞjaiihaij, and jcii the eigenstates of a
nondegenerate property C ¼ P

jgðcjÞjcjihcjj (with f and g
arbitrary bijective functions). Then A and B are comple-
mentary properties if for all i, j we have jhaijcjij2 ¼ 1=d, d
being the Hilbert space dimension. Clearly complementary
properties with this definition identify two mutually
unbiased bases [1]. Herewe study what classical correlations
in the measurements of these complementary properties tell
us about the quantum correlations of the state of the system.
Typically one discusses entanglement [2] in terms of

nonlocality, Bell inequality violations, monotones over local
operations and classical communication, etc. For example,
previous literature on entanglement focused on time reversal
(for the positive partial transpose criterion [3,4]), local uncer-
tainty relations [5–9], entropic uncertainty relations [10–13],
entanglement witnesses [14–17], concurrence [18], the
cross-norm criterion [19], and the covariance matrix criterion
[20–24] (the latter encompassing many of the former). In
contrast to these studies, we focus specifically on classical
correlations for complementary properties. Classical correla-
tions are typically quantified in terms of the mutual informa-
tion, which is themain quantity considered here.Wewill also
discuss the case of alternative measures such as the Pearson
correlations and the sum of conditional probabilities. In [25]
related approaches using specific measures of correlations
(different from the ones used here) were proposed.
The outline of the Letter follows. We start by describing

the general scenario we employ for correlation evaluation.
We then introduce different measures of correlations and
state our results and our conjectures regarding entangle-
ment and quantum correlations. We provide some examples
of applications. The details of the proofs of our results are
reported in the Supplemental Material [33].

Complementary correlations.—Consider two systems of
finite dimension d [44] and two observables A ⊗ B and
C ⊗ D (Fig. 1) where A and C are complementary on the
first system (namely, jhaijcjij ¼ 1=

ffiffiffi
d

p
for all eigenstates of

A and C) and B andD on the second. For example, take the
computational basis of the two systems as the eigenstates of
A and B, and the Fourier basis as the ones of C and D. We
can quantify the correlations between the results of the
measurements of A and B with some correlation measure
XAB and the correlations betweenC andDwith XCD. AsX
below we will define and investigate three possibilities: the
mutual information XXY ¼ IXY , the sum of conditional
probabilities XXY ¼ SXY , and the Pearson correlation
coefficient XXY ¼ CXY . A measure of the overall correla-
tion of the initial state, which we name the “complementary
correlations,” can then be given as the sum of the absolute
value of the two measures jXABj þ jXCDj or as the product
jXABXCDj. The latter is typically a weaker measure than
the former, since an upper bound for the sum implies
an upper bound for the product. Indeed, ðjXABj1=2 −
jXCDj1=2Þ2 ≥ 0 implies 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijXABXCDj
p

≤ jXABj þ jXCDj.
Thus, we will mainly consider the sum of the correlations
for complementary observables jXABj þ jXCDj as a way to
evaluate the complementary correlations.

FIG. 1 (color online). Complementary correlation measure-
ments. Each of two systems is subject to the measurement of one
of two observables: either A or C on system 1 and either B or D
on system 2. Correlations are evaluated between the results of A
and B and between C and D (dashed lines). A and C are
complementary on the first system, B and D on the second.
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Mutual information.—We start considering the mutual
information: IAB ≡HðAÞ −HðAjBÞ, where HðAÞ is the
Shannon entropy of the probabilities of the measurement
outcomes of the first system and HðAjBÞ is the conditional
entropy of the outcomes of the first conditioned on the
second. The complementary correlations are then IAB þ ICD.
The relation of this quantity to the entanglement and

the discord of the state of the system is illustrated by the
following results: (i) The state of a bipartite composite
quantum system is maximally entangled if and only if there
exist two complementary measurement bases where
IAB þ ICD ¼ 2 log2 d. (ii) If

IAB þ ICD > log2 d; ð1Þ

the state of the bipartite system is entangled. (iii) The
separable states that satisfy this inequality with equality
(i.e., IAB þ ICD ¼ log2 d) are the classically correlated
(CC) zero-discord states of the form

ρcc ¼
X

i

jaiihaij ⊗ jbiihbij=d; ð2Þ

with jaii and jbii eigenstates of A and B (or the analogous
state with a uniform convex combination of eigenstates of
C andD). Some examples of IAB þ ICD for various families
of states are plotted in Fig. 2(a), where we emphasize the
threshold log2 d above which all states are entangled.
The first result follows from the fact that each term in the

sum is upper bounded by log2 d by definition. Themaximum
value for the sum is then 2 log2 d and is achievable if and only
if there is maximal correlation both between A and B, and
between C and D. Simple properties of the conditional
probabilities (see SupplementalMaterial [33]) imply that this
can happen for a suitable choice of observables if and only if
the state is maximally entangled. The second result is a
consequence of the concavity of the entropy and of Maassen
and Uffink’s entropic uncertainty relation [26] (see
Supplemental Material for the details [33]). It gives a
sufficient condition for entanglement that can be used for
entanglement detection. The third result is surprising: One
might expect that the separable states at theboundarywith the
entangled region are highly quantum correlated, whereas we
find that they only have classical correlations and no discord.
This means that quantum correlated states without entangle-
ment do not have higher correlations for complementary
properties than CC states. This result is peculiar for the
mutual information as a figure ofmerit; it is no longer true for
the Pearson correlation [where a family of quantum-quantum
(QQ) states sits on the border, as shown in Fig. 2(b)]. It can be
proved by analyzing the conditions for the equality of the
concavity of the entropy and of Maassen and Uffink’s
inequality (see Supplemental Material [33]).
Pearson correlation.— The second measure of correla-

tion we consider is the Pearson correlation coefficient CAB,
defined as

CAB ≡ hABi − hAihBi
σAσB

; ð3Þ

where, as before, A and B denote observables relative to the
two systems, hXi ¼ Tr½Xρ� is the expectation value on the
quantum state ρ, and σ2X is the variance of the observable X.
The above quantity cannot be applied to eigenstates of A or
B. Clearly, CAB ¼ 0 for uncorrelated (product) states. In
contrast to the classical Pearson correlation coefficient, the
quantum one is, in general, complex if A and B do not
commute, but as in the classical case, its modulus is upper
bounded by one:

jhABi − hAihBij2 ¼ j h½A;B�i þ hfA; Bgi
2

− hAihBij2

¼ j 1
2
h½A; B�ij2 þ j 1

2
hfA; Bgi

− hAihBij2 ≤ σ2Aσ
2
B; ð4Þ

FIG. 2 (color online). Examples of complementary correlations
for different measures of correlation and different families of
states. (a) Correlation IAB þ ICD plotted as a function of the
parameter p for the families of p-dependent two-qubit states
indicated in the lower right panel. The dotted-line states are
always separable and are nonzero discord QQ states for p ≠ 0, 1;
the dashed-line states (Werner states) are entangled for p > 1=3,
whereas the solid-line states are entangled for p ≠ 1=2. Above
the threshold 1 (stars), the states are certainly entangled. (b) Same
as previous for jCABj þ jCCDj, note that the QQ state (dotted line)
is on the conjectured threshold 1 (stars) for this measure of
correlation. (c) Same as previous for SAB þ SCD. Here there are
two entanglement boundaries: The states that have a sum larger
than 3 or smaller than 1 are conjectured to be entangled. Again,
the dotted state coincides with one of the conjectured boundaries.
The dashed line and the solid line are superimposed. Here j�i≡
ðj0i � j1iÞ= ffiffiffi

2
p

and jΦ�i≡ ðj00i � j11iÞ= ffiffiffi
2

p
.
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where ½·; ·� and f·; ·g denote the commutator and anticom-
mutator, respectively, and where the final inequality is the
Schrödinger uncertainty relation [27].
We now use jCABj þ jCCDj as a measure of complemen-

tary correlations to recover some entanglement properties
of the system state. The Pearson coefficient gauges only the
linear correlation of two stochastic variables, so it will not
detect maximal correlation even for a maximally entangled
state unless pairs of observables are linear in each other’s
eigenvalues (e.g., it would fail if A ¼ P

jjjajihajj and
B ¼ A3). However, if one restricts to linear observables,
one can prove that a state is maximally entangled if and
only if there exist two complementary bases such that
jCABj þ jCCDj ¼ 2, e.g., if one uses A ¼ B ¼ P

jjjajihajj,
C ¼ D ¼ P

jjjcjihcjj where jaji and jcji are two com-
plementary bases. The proof follows from the properties of
the conditional probabilities (used to prove the analogous
statement for the mutual information) and from the fact that
the Pearson coefficient is �1 if and only if there is a
functional relation that connects the two stochastic varia-
bles (details in Supplemental Material [33]).
Instead, for nonmaximally entangled states we have two

conjectures which are supported by numerical evidence:
(i) If jCABj þ jCCDj > 1, the two systems are entangled.
As for the mutual information, the inequality is tight
since ρcc is separable and has jCABj þ jCCDj ¼ 1. (ii) If
jCABCCDj > 1=4, the two systems are entangled. Also this
inequality is tight: It is attained by the separable stateP

iðjaiaiihaiaij þ jciciihcicijÞ=2d, with jcii eigenstates
of C. As argued above, the conjecture with the product
is weaker than the one with the sum: Proving that
all separable states have jCABj þ jCCDj ≤ 1 implies
jCABCCDj ≤ 1=4.
The proof of these conjectures is complicated by the fact

that the convexity properties of CAB are unknown.
Nonetheless, they are natural conjectures that are easy to
verify for large classes of states [e.g., see Fig. 2(b)]. We
have also performed extensive numerical checks by testing
them on large sets of random states generated according to
the prescription described in [28], and verifying that no
state with nonpositive partial transpose [3] lies over the
conjectured threshold.
Note that the Pearson correlation only measures linear

correlation, whereas the mutual information measures all
types of correlations. So one could think that the latter is
stronger and that these conjectures are implied by the
mutual information results of the previous section.
Surprisingly, this is false since there exist probability
distributions that have maximal Pearson correlation but
negligible mutual information [29]. Indeed, consider the
family of entangled two-qubit states

jψϵi ¼ ϵj00i þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
j11i; ð5Þ

with ϵ ∈ ½0; 1�. If one uses A ¼ B ¼ j1ih1j and
C ¼ D ¼ jþihþj, for all 0 < ϵ < 1 such state has

jCABj þ jCCDj ¼ 1þ 2ϵ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
> 1 [45], but jψϵi clearly

has negligible mutual information for ϵ → 0. In other
words, the Pearson correlation identifies jψϵi as entangled
for all 0 < ϵ < 1 (assuming the above conjectures),
whereas the mutual information does not even identify it
as classically correlated at all for ϵ → 0. Indeed, numerical
simulations suggest that the Pearson correlation is more
effective at detecting entanglement in random states than
mutual information.
Sum of conditional probabilities.—The third measure of

correlation we consider is the sum of conditional proba-
bilities SAB, defined as

SAB ≡X

i

pðaijbiÞ; ð6Þ

where pðaijbiÞ is the probability of outcome ai on the first
system conditioned on result bi on the second. [This is a
somewhat limited measure of correlations as the corre-
spondence ai ↔ bi among results is clearly arbitrary. A
more relevant measure of correlation should also maximize
(or minimize) over the permutations of the measurement
outcomes, but for the sake of simplicity we will avoid it.] In
[17] a similar approach was used, but employing joint
probabilities in place of conditional ones.
Gauging complementary correlations with the sum

SAB þ SCD we can again obtain information about entan-
glement and quantum correlations: (i) Analogously to the
case of the mutual information, the sum is optimized only
for maximally entangled states; a state is maximally
entangled if and only if there exist two complementary
bases such that SAB þ SCD ¼ 2d. (ii) As for the Pearson
correlation, we have a conjecture for nonmaximally
entangled states: If SAB þ SCD has a value outside
the interval ½1; dþ 1�, we conjecture that the two systems
are entangled. As in the previous cases, the inequalities
are tight since the upper bound is attained by the separable
state ρcc and the lower bound by the separable stateP

ijaibi⊕1ihaibi⊕1j=d, with ⊕ sum modulo d.
Let us analyze the case of separable states. We remind

the reader that classical-quantum (CQ) and quantum-
classical (QC) states have the forms

P
ipijaiihaij ⊗ ρi

and
P

ipiρi ⊗ jaiihaij, respectively, where fjaiig is a set
of orthogonal states for one subsystem and fρig is not an
orthogonal set of states. Note that separable QQ states
comprise all separable ones that are not CC, CQ, or QC.
For these states we can prove that (iii) if CC states have

maximal correlations on one of two complementary var-
iables, they are uncorrelated on the other [formally, if
pðaijbiÞ ¼ 1∀ i then we must have pðcijdiÞ ¼ 1=d∀ i,
where ai, bi, ci, di are the results of the measurements of A,
B, C, D with A complementary to C and B to D], (iv) CQ
states cannot have maximal correlations on any variable
[formally, we cannot obtain pðaijbiÞ ¼ 1∀ i, even when
pðcijdiÞ ¼ 1=d], and (v) QQ states can have only partial
correlation for each complementary property. For example,
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the separable two-qubit state ðj00ih00j þ j11ih11j þ
j þ þihþ þ j þ j − −ih− − jÞ=4 has a partial correlation
on both complementary variables, since pð0j0Þ ¼
pð1j1Þ ¼ pðþjþÞ ¼ pð−j−Þ ¼ 3=4.
Given the properties (iii) and (iv), one might suspect that

separable states with nonvanishing quantum correlations
have always less complementary correlations, but this is not
the case, as emphasized by (v). Summarizing, CC states can
have maximal correlation only on one property, CQ states
cannot have maximal correlation in any property, and QQ
states can have some correlation on multiple properties, but
you need pure, maximally entangled states to get maximal
correlations on more than one property.
Regarding the result (i), the proof is a direct consequence

of simple properties of conditional probabilities (see
Supplemental Material [33]) as for the cases seen previ-
ously. The difficulty in proving the conjecture (ii) stems
again from a lack of definite concavity properties of SAB,
but as for the previous conjecture we have extensively
tested it numerically on random states. One may ask
whether the sum over all outcomes in the statement of
the conjecture is necessary. Indeed it is: The statement that
all separable states satisfy 1=d ≤ pðaijbiÞ þ pðcijdiÞ ≤
1þ 1=d for some i is false (where the two bounds 1=d
and 1þ 1=d give the bounds 1 and dþ 1 we used above
when the sum over i is performed). A counterexample is the
separable state ðj00ih00j þ j þ þihþ þ jÞ=2 of two qubits
for which pð0j0Þ þ pðþjþÞ ¼ 5=3. If one uses joint
probabilities in place of conditional ones, a sufficient
condition for entanglement can indeed be proven [17].
The results (iii) and (iv) can be proved at the same time by
using simple properties of CC and CQ states when they are
expressed in two complementary bases (see Supplemental
Material [33]), whereas property (v) is a direct consequence
of the example provided above.
Extension to more complementary observables.—Up to

now we have considered the correlations of the measure-
ment outcomes of two complementary observables. All
systems have at least three complementary observables [1],
and it is known that there are dþ 1 for d-dimensional
systems if d is a power of a prime [1,30]. Our results can be
immediately extended to an arbitrary number of comple-
mentary observables by calculating the correlations of all
the known complementary observables and considering the
sum of the two largest ones. For example, for mutual
information, we can extend the condition, Eq. (1), to
conclude that the state is entangled if

maxðIAB;ICD;IEF;…;Þþmax2ðIAB;ICD;IEF;…;Þ> log2d;

ð7Þ

where max2 denotes the second largest term and where
A ⊗ B, C ⊗ D, E ⊗ F, etc. are all observables comple-
mentary to each other. The extensions of all other results
and conjectures are analogous.

Moreover, at least in the case of qubits the bound at point
(ii) for the mutual information and the conjectured bound at
point (i) for the Pearson correlations can be made stronger
by adding correlations for the third complementary observ-
able. This can improve significantly the efficiency of the
present method if used for entanglement detection. For
details and for a comparison with other known entangle-
ment detection schemes based on measurements of mutu-
ally unbiased bases, see the Supplemental Material [33].
Conclusions.—In summary, we have introduced an inter-

pretation of entanglement based on classical correlations of
the measurement outcomes of complementary observables.
We have studied different types of correlations (mutual
information I, Pearson coefficient C, and the sum of condi-
tional probabilities S) for complementary observables of
two systems. We have shown how they provide information
on the entanglement and quantum correlations of a bipartite
system.We have derived the following results and presented
a few reasonable conjectures: (i) We proved necessary and
sufficient conditions for maximal entanglement for I, C, S,
(ii) we proved sufficient conditions for entanglement based
on I and conjectured sufficient conditions based on C and on
S, (iii) when gauging complementary correlations using I,
we proved that the separable states on the boundary with the
entangled-states region are strictly classically correlated, but
the same result is false if one uses C or S; moreover, we have
shown how S provides insight on CC, CQ, QC, and QQ
states, showing that (iv) without entanglement only classi-
cally correlated states CC can have maximal correlation on
one variable (but then they have no correlation on the
complementary one), whereas (v) separable QQ states can
have only partial correlations on complementary variables.
One can ask if it is possible to give necessary and

sufficient conditions based on correlations for complemen-
tary observables. The naive statement that entangled states
always have larger correlations than separable states is
false, since it is known that entangled states exist (e.g., jψϵi
defined above) that are arbitrarily close to separable pure
states [31] and to the maximally mixed state (in the sense
that for any distance ϵ one can choose a sufficiently large
dimension d such that an entangled state is within distance
ϵ from the maximally mixed state [32]). These have
vanishing correlations for most measures of correlation.
A notable exception, described above, is the Pearson
coefficient that is able to detect the entanglement of jψϵi
for all ϵ > 0 (but it misses other types of entangled states).

We acknowledge useful feedback from B. Kraus, K.
Życzkowski, and an anonymous referee.
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