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Phytoplankton cells have evolved sophisticated strategies for actively responding to environmental
signals, most notably to mechanical stresses of hydrodynamic origin. A largely unanswered question,
however, is the significance of these cellular responses for the largely heterogeneous spatial distribution of
cells found in the oceans. Motivated by the physiological regulation of buoyancy prevalent in nonmotile
phytoplankton species, we solve here a minimal model for “active” sinking that incorporates these cellular
responses. Within this model, we show how buoyancy regulation leads to intense patchiness for nonmotile
species as compared to passive tracers, resulting in important variations in settling speeds and, as a
consequence, determining escape rates to the deep ocean.
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Marine environments are dominated by scarce, patchy,
and fast-fluctuating resource landscapes. This spatial
heterogeneity plays an important role in ecosystem-level
processes such as predator-prey interactions, ecosystem
stability, and biological productivity [1]. For planktonic life
forms, patchiness is a ubiquitous phenomenon for which
oceanographic observations exist as early as the eighteenth
century [2]. Physical and biological factors including
growth and grazing together with large-scale oceanic
turbulence contribute significantly to its formation [3-5].
However, there is still little consensus on its causes and
consequences.

In recent years, significant effort has been devoted to
understand the mechanisms underlying the formation of
patches of marine phytoplankton [4], as these form the
basis for the vast majority of aquatic food webs, are
responsible for half of the world’s oxygen production,
and regulate essential biogeochemical cycles [6]. At the
largest scales, phytoplankton cells behave as passive tracers
advected by the oceanic flow, and patchiness mainly arises
through the coupling of turbulence, population, and
nutrients dynamics [5]. However, at smaller scales, when
the velocities of the turbulent flow, according to the
Kolmogorov energy cascade, become smaller the interplay
between biological and physical factors becomes relevant,
leading to the formation of unexpected macroscopic phe-
nomena. These include the recently described generation of
phytoplankton layers [7] or cell clustering [8,9] by gyro-
taxis, an essential biophysical mechanism for swimming
microorganisms. More generally, the hydrodynamics of
motile microorganisms has been the subject of much recent
theoretical [10,11] and experimental [12,13] work dealing
with the intriguing properties of swimming at the lowest
Reynolds numbers. On the contrary, our focus here is on
nonmotile phytoplankton that comprise ecologically fun-
damental groups such as diatoms and cyanobacteria.
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Extensive work has already disproved the classical image
of nonmotile phytoplankton as passive “wanderers”
entrained by currents into a turbulent life. Indeed, non-
motile cells evolved sophisticated strategies for actively
responding to environmental signals such as incident light,
nutrient concentration, or mechanical stresses [14,15].
These cellular responses include changes in metabolic
activity affecting cell buoyancy [16-21], variations of
the cell cycle [22], triggering of cell-cell communication,
and the initiation of cellular death [22-25].

First evidence that cellular activity produces changes in
the density of phytoplankton cells was provided in
Refs. [26,27], where it was shown that buoyancy was
mainly controlled in diatoms by the replacement of heavy
ions by light ions in the vacuole, whereas in cyanobacteria
buoyancy is regulated by means of gas vesicles [28]. In
either case, these physiological responses have a direct
effect on the physical properties of the organism and, as
such, they represent dynamical constraints that modify the
interaction between the organism and its fluid environment
in much the same way as motility does. However, the role
of this relevant physiological response in the dynamics of
phytoplankton sinking and its consequences for patchy
distributions have been greatly overlooked. In this Letter,
we build a minimal model for buoyancy control and show
that changes in the density of the cell as a consequence of a
physiological response to hydrodynamic stresses modify
significantly the settling dynamics, leading to the appear-
ance of intense patchiness for nonmotile species as com-
pared to passive tracers, resulting in important variations in
settling speeds and, as a consequence, determining escape
rates to the deep ocean.

The problem of the motion of a sinking particle within a
vortical flow is of great importance in diverse areas such as
meteorology, manufacturing, energy production, or ecol-
ogy. The seminal work of Stommel [29] dealt with the
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sedimentation of noninertial particles within an array of
vortices, showing that below a critical value of the still fluid
particle sedimentation velocity, persistent suspension of
heavy particles is possible. Above this critical value, the
attraction regions (i.e., the so-called Stommel zones)
disappear and all particles eventually settle. However, as
was shown in Refs. [30,31], this trapping mechanism does
not withstand inertial perturbations to the particles motion.
Particle trapping is still possible in more complex turbulent-
like scenarios due to the interplay between particle inertia
and streamline curvature [32,33]. In this work, however, we
stick to the simplest vortical case and highlight the effect of
buoyancy control in the generation of stationary trapped
solutions to the sinking dynamics.

We consider a well-known exact solution of the Navier-
Stokes equations in the inertialess limit, the Taylor-Green
vortex (TGV) flow [34,35], which consists of an array of
counterrotating vortices with spacing L and a maximum
vorticity @, at their center. The doubly periodic velocity
field is given by u = (wyL/4x)[— cos(2zx/L) sin(2zz/L),
sin(2zx/L) cos(2nz/L)]. For the low Reynolds number
case considered here, Re = wyLa/(27v) <1 with a
the particle radius and v the fluid kinematic viscosity,
the dynamics of the inertial particles is determined by the
Maxey-Riley equation [36]. For simplicity, we neglect the
Basset history term and the Faxen corrections [37-39].
The nondimensional form of this equation is obtained by
using the characteristic vortex length L/(2x), time 1/wy,
and velocity wyL/(27) scales and the maximum density of
the particle p, to yield
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where x, represents the position of the particle, u, its

velocity, and Du/Dt the derivative along the path of a fluid
element and du/dt along the trajectory of the particle. Both
derivatives are evaluated at the instantaneous position of the
particle. Thus, motion of particles is controlled by three
parameters: the particle Stokes number St = 2a’w,/ (9vR)
characterizing inertia, the material parameter R defined by
the mass ratio pr/(py + pr/2), and the nondimensional
still fluid sedimentation velocity of the particle
vy = 2a’g(1 —3R/2)/[9vRwyL/(27)).

To model buoyancy changes upon mechanical stresses,
we consider a linear dependence of the density of the
particle with the local strain rate of the flow (which, for the
TGV flow, is simply given by ¢ = 1/2sinxsinz). This
response is consistent with the nearly linear dependence
shown in Ref. [14] for changes in the concentration of

cytosolic calcium Ca** with applied strain rates in marine
diatoms or the similarly linear physiological response with
strain rate observed in bioluminescent dinoflagellates [40].
More generally, it can be considered as a first-order
linearization of the cellular response to mechanical stimuli
around pg. As the detailed mechanism responsible for how
intracellular responses translate into the regulation of
buoyancy is still unclear and buoyancy changes were not
directly characterized in those experiments, we will analyze
two possible scenarios differing in the sign of the response:
we refer to cells whose density decreases (increases)
with applied stresses as shear-thinning (shear-thickening),
respectively. Hence, density changes in the shear-
thinning case reduce to p,=1-2(1—a)p|é|, while p, =
R/(1 =R/2) + pla+2(1 — a)|€|] for the shear-thickening
case, with f = (1 —=3R/2)/(1 — R/2)] to allow for density
changes in the observed range: from the maximum density
of the cell to almost neutral buoyancy (i.e., a minimum
sedimentation velocity set by the parameter a to av,) [6].
As we set the linearization by defining the density value at
two different points (i.e., for the maximum |¢| and in the
absence of mechanical stresses), the two cases are non-
symmetric with respect to |¢]. Although slightly more
convoluted algebraically, this is an experimentally more
accessible description. The limit @ = 0 corresponds to a
particle that reaches neutral buoyancy, while f = 0 corre-
sponds to passive particles with constant density, the
sedimentation of which was amply considered in previous
work [30,31]. Note that we assume an instantaneous
response of the particle to changes in the strain rate, as
the response time measured in Ref. [14] is on the order of
1 —2 s, while the time needed for sinking through the
smallest vortex is on the order of minutes. A more complex
response kinematics, including time-dependent buoyancy
modulations and the resulting adaptive dynamics, will be
the subject of future work.

We explore the effect of buoyancy control by integrating
Eq. (1) for different values of the nondimensional param-
eters v, St, and R. Integration was carried out with a
fourth-order Runge-Kutta scheme. Numerical results
shown in Ref. [31] were used as a check for our numerical
method. In particular, the mass-ratio parameter was fixed to
R = 0.4 that corresponds to py = 2pr, which can be
considered a good approximation of the maximum density
of diatoms. We set St = 0.1 and a = 0.1. It should be noted
that the Stokes number for a fixed value of the mass-ratio
parameter depends on the size of the particle and the
strength of the local flow, which eventually depends on
the intensity of the vortical flow. The relative importance of
the still fluid sedimentation velocity to the base flow is
given by v,. Thus, the most relevant phenomena arises
when the sedimentation velocity of the particle is of the
same order of the maximum velocity of the base flow (i.e.,
when v, 7 0.5). In Fig. 1 we compare the trajectories of
passive, shear-thickening and shear-thinning particles for
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FIG. 1 (color online).
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Representative trajectories for R = 0.4, St = 0.1, « = 0.1, and v, = 0.15 (a), v, = 0.325 (b), v, = 0.475 (¢),

and v; = 0.525 (d). In all panels and subsequent figures, the green lines (light grey) correspond to the passive case, the shear-thinning
case is depicted in blue (dark grey), and the shear-thickening case is depicted in red (medium grey). All trajectories were initialized at the
same (or equivalent in the doubly periodic domain) initial position (marked as a white circle) while the final steady state is marked in
black. Background gray scale and arrows correspond respectively to the vorticity and velocity field of the Taylor-Green vortex flow.

different values of v, around this value. All trajectories
were initialized at the same (or equivalent in the doubly
periodic domain) initial position (marked as a white circle
in Fig. 1) and with the same initial velocity.

For small values of v, the three trajectories are quite
similar with particles reaching, after a transient time, a limit
sinking trajectory, and no permanent suspension is possible
[Fig. 1(a)]. As v, increases, the effect of buoyancy control
becomes more important: for v, = 0.475 while all passive
particles sink indefinitely, shear-thickening particles col-
lapse into a limit cycle and shear-thinning particles con-
verge to a stable fixed point along the z = = line [Fig. 1(c)].
Both dynamical attractors are symmetric about the x = z/2
and x = 3z/2 lines. For v; > 0.5, the dynamics of the
passive and shear-thickening particles remains unaltered,
while for the shear-thinning case the two symmetric fixed
points along the z = 7z line eventually collapse and a new
pair emerges along the x = /2 and 37/2 lines as shown in
Fig. 1(d). Finally, for v, > 1, all particles sink forever
independently of their buoyancy control as long as we
avoid the singular limit @ = 0. In this limit, the z = 7z line
degenerates, leading to nonphysical behavior with perma-
nent suspension for arbitrarily large v,.

To characterize the basin of attraction and, hence, the
area of permanent suspension, we performed a parametric
study of Eq. (1). Initial conditions were uniformly distrib-
uted within the domain [0,27] x [0,27], and integration
was carried out for a sufficiently large integration time to
safely discard slow transients. Figure 2(a) shows the area of
attraction for different values of v, for passive, shear-
thinning, and shear-thickening particles. The vertical black
dashed line marks the v, = 0.5 condition. The results for
passive inertial particles are consistent with previous
work [30,31] and manifest the impossibility of permanent
suspension under this simplified inertial scenario. In con-
trast, shear-thinning particles present a continuous transi-
tion to partial trapping with a maximum trapping area at
vy, = 0.5, while shear-thickening particles show a discon-
tinuous transition to global suspension at v, =~ 0.3. The

fundamental differences in potential trapping reported here
for the first time highlight the relevance of buoyancy
control for persistent suspension of nonmotile phytoplank-
ton cells.

Moreover, and even when no permanent trapping is
possible, buoyancy control has important consequences for
the dynamics of sinking particles, substantially modifying
sinking speeds and the duration of transients. To analyze
the effect on sinking speeds, we calculate the mean
asymptotic sedimentation speed for particles outside the
basin of attraction as a function of v. Figure 2(b) shows the
results for passive, shear-thinning, and shear-thickening
particles. As was shown in Ref. [31], passive particles tend
to display nonuniform spatial distributions under the
combined effect of vortical advection, buoyancy, and
inertia, preferentially converging to regions of low vorticity.
This results, for low vy, in an increase of the mean sinking
speed (v,) as compared to sinking in still fluid with
particles exploring mainly the downwelling regions of
the flow, but in a significant decrease in the mean sinking
speed for v, = 0.5 where sinking trajectories tend to the
x = /2 vertical line (as seen in Fig. 1). Buoyancy control
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FIG. 2 (color online). The area of attraction (a) and the averaged
sedimentation velocity of particles departing out of the area of
attraction (b) for passive (light grey), shear-thinning (dark grey),
and shear-thickening (intermediate grey) buoyancy control as
function of the still fluid sedimentation velocity, v,. The 45°
dashed line in panel (b) is a visual guide for (v.) = v.
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notably reduces sinking speeds for slowly sinking particles
(i.e., vy £0.3) for both the shear-thinning and shear-
thickening cases. For instance, passive particles sink twice
as fast as shear-thickening particles for v, = 0.25. On the
contrary, mean sinking speed shows a marked decrease for
passive compared to shear-thinning particles when v, = 0.5
[see Fig. 2(b)]. These results emphasize that care should be
taken when analyzing sinking speeds of nonpassive par-
ticles, as the interplay between advective contributions and
physiological control translates into diverse forms.

We further explore the effect of buoyancy control on
sedimenting particles by looking at the distribution of
escape times to the deep ocean 7 as a function of initial
position x,(t =0). We define operationally the escape
time as the time needed for particles to cover a large vertical
distance z = 2zn, with n > 1 to ensure we capture the
asymptotic behavior. As shown in Fig. 3(b) for shear-
thickening particles and v, just below the discontinuous
transition, the distribution is markedly bimodal with over
an order of magnitude difference between the two distinct
maxima. Hence, besides negligible particles trapping in this
regime, the relative time spent by particles in suspension is
highly heterogeneous when buoyancy control is included.
On the contrary, the distribution of 7 for passive particles is
shown in Fig. 3(a) and presents a simple exponential decay
for the same parameters used above. This dynamics can be
better understood by observing the spatial distribution of
escape times represented in Fig. 3(c). With over plotted
black solid lines, we represent the trajectories of the
attractive limit cycles that emerge above the transition. It
is evident from this figure that particles departing within the
area enclosed by the limit cycle take a significantly longer
time to escape the initial periodic box, whereas particles
with initial conditions outside of this area reach the
attractive sinking trajectory more quickly.

The relevance of the described temporal heterogeneity
for the emergence of spatially patchy distributions
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FIG. 3 (color online). The probability distribution of z for
(a) passive particles and (b) the shear-thickening case, with v, =
0.305 and n = 10. (c) Contour plots of the spatial distribution of =
for the same parameter set. Trajectories plotted in black corre-
spond with the four attractive limit cycles that emerge for
vy 2 0.3. Dashed (flat) filled bars in (b) correspond respectively
to the distribution within (outside) the area enclosed by the black
limit cycles shown in (c).

manifests in the accumulation index W. Following the
standard definition of patchiness used in spatial ecology
[8,41], we partitioned the domain into N boxes and
computed the normalized variance o> over the mean u
of the box occupancy function to evaluate ¥ =
i+ (6%/u) — 1 for the stationary distribution. In Fig. 4(a)
we highlight the linear covariation of St and v with a while
keeping other physical parameters fixed. The effect of
particle size on patchiness strongly depends on buoyancy
control. While passive particles sink indefinitely and,
hence, they do not contribute to the accumulation index
of permanently suspended particles, the accumulation
index for shear-thinning and shear-thickening cells is
highly heterogeneous in parameter space. ¥ shows distinct
maxima for cell sizes a in the range 10-100 ym, with the
position of the maximum shifting towards lower radii as we
consider smaller vortices. For turbulent oceanic flows and
nonmotile species for which the described mechanism is
prevalent, this would result in a cell size distribution within
patches that depends on the intensity of turbulence as
shown in Fig. 4(b): we expect small (¢ ~ 10 ym) nonmotile
cells to dominate patchy distributions for typical turbulence
conditions (where the size of dissipative vortices is given by
a Kolmogorov scale L, ~ 1073 m) while larger cells
(a~ 100 ym) will only display patchiness under more
moderate turbulence (i.e., larger L;). We are not aware
of any field measurement to date either refuting or
supporting this argument which, hence, remains as a
testable prediction of our model.

In summary, we have presented the first study of the
coupled dynamics of fluid advection and physiological
buoyancy control in phytoplankton. Our results show that
sinking dynamics in the ocean is qualitatively modified
when active cellular processes are considered, with major
consequences for the spatial distribution of cells, their
sinking speeds, and their escape times to the deep ocean.
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FIG. 4 (color online). (a) The accumulation index W of
permanently suspended particles as a function of particle radius
a for passive (green line), shear-thinning (blue line), and shear-
thickening (red line) buoyancy control. The different curves
correspond to different scales within the Kolmogorov range as
highlighted with squares in panel (b). The shaded area in
(b) marks the typical range of values for the ocean.
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This immediately suggests a number of specific experi-
mental investigations. Chief among them is the detailed
study of the cellular response function for representative
phytoplankton species, using appropriately controlled
mechanical stimuli coupled to tracking procedures to
elucidate the sign, range, and time scales of natural
responses. While simple vortical flows (such as the TGV
flow used herein) provide fundamental insight of the most
relevant physics, it is fundamental to assess the relevance of
the proposed mechanism under more realistic spatially
heterogeneous and time-dependent turbulent conditions
either through direct numerical simulations of turbulent
flows or by direct experimental visualization. Exploring
these differences in future work may lead to important
insights into the interplay of buoyancy control with
dominant inertial processes that will help to clarify previous
contradicting results on the fate of sinking particles
[32,42,43]. Moreover, for certain microorganisms, the
interplay between buoyancy regulation and motility, either
in the form of stochastic or deterministic contributions, also
requires further investigation. Additionally, the described
dynamics is of interest for the burgeoning field of active
matter where dense suspensions of motile cells are rou-
tinely used as a paradigmatic example, while active non-
motile cells have been hitherto ignored. Finally, our results
suggest the possibility of engineering solutions for the
permanent suspension of heavy particles in turbulent flows
based on active buoyancy control, with a wealth of
applications in the microfabrication industry.
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