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We describe the first analytically tractable example of an instability of a nonorientable minimal surface
under parametric variation of its boundary. A one-parameter family of incomplete Meeks Möbius surfaces
is defined and shown to exhibit an instability threshold as the bounding curve is opened up from a double-
covering of the circle. Numerical and analytical methods are used to determine the instability threshold
by solution of the Jacobi equation on the double covering of the surface. The unstable eigenmode shows
excellent qualitative agreement with that found experimentally for a closely related surface. A connection is
proposed between systolic geometry and the instability by showing that the shortest noncontractable closed
geodesic on the surface (the systolic curve) passes near the maximum of the unstable eigenmode.
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The subject of this Letter lies at the intersection of
several branches of physics and mathematics: minimal
surfaces, soap films, topological transitions, computation,
and shortest closed noncontractible geodesics on surfaces,
known as systolic curves [1]. Euler’s discovery in 1744 [2]
of the catenoid as the area-minimizing surface spanning
two circular loops effectively began the study of minimal
surfaces, which are now known to play a role in areas as
diverse as soap films [3], supramolecular assemblies [4],
defect structures [5], as well as general relativity [6], string
theory [7], and even architecture [8].
Of particular interest for centuries has been not only the

issue of determining a minimal surface supported by a
given “frame,” but also the competition between different
possible surfaces on the same frame [9]. Thus, in the case
of two parallel circular rings whose separation H is varied,
the catenoid solution ceases to be the minimum energy
state beyond a calculable valueH�, and ceases to exist at all
beyond a critical value Hc (> H�). For H� < H < Hc, the
lower energy state is the Goldschmidt solution [10], discs
spanning each loop, connected by a singular line segment.
In laboratory realizations of this setup with soap films, slow
variation of the spacing beyond Hc triggers collapse of the
catenoid with a complex set of neck-pinching singularities
[11,12], leading dynamically to the Goldschmidt solution
(minus the unphysical connection). Dynamics akin to the
Rayleigh-Plateau instability occur not only in capillary
phenomena, but even in exotic contexts such as the
instability of black strings [13].
The catenoid is important in the study of minimal surfaces

because its high degree of symmetry and simplicity make it
possible to determine, in detail, the nature of its linear
instability at Hc from the second variation of the area
functional [14]. The unstable eigenfunction at the instability
point is the solution of the Jacobi equation ð∇2 − 2KÞu ¼ 0,

where K is the Gaussian curvature. Axisymmetry of the
catenoid reduces the Jacobi equation to a one-dimensional
Schrödinger equation with a sech-squared potential. This
approach has been extended to transitions between the
helicoid and the catenoid [15], locally isometric surfaces
that interconvert without a singularity.
Recentwork has indicated that, when the frame supporting

a soap film is deformed so as to render it unstable, the location
and character of the ensuing singularity that marks the
topological transition depend on the topology of the initial
minimal surface. For example, the catenoid instability leads
to a singularity in the bulk of the film,whereas aMöbius strip
minimal surface transforms to a disc through a boundary
singularity [16–18]. Moreover, at least in these two cases,
we observed that the location of the singularity (bulk or
boundary) can be determined by studying the topology of
the systolic curve on the surface [1,19]. Historically, there
has been great interest in such curves [20], but apart from
quantum error correction [21], it appears that there have
been no applications of systolic geometry in physics.
Given that the prototype models for topological transi-

tions of a bounded film are the catenoid (for bulk singular-
ities) and the Möbius strip (for boundary singularities),
it is natural to seek an analytically tractable example of
an instability for a nonorientable surface. Here, we present
one, using the surface known as a Meeks Möbius strip [22].
This is a complete surface [23] with total curvature (the
surface integral of K) of −6π. As is well known, the only
stable complete minimal surfaces in R3 are planes [24,25].
One, therefore, deduces that it is impossible to continue any
bounded nonplanar minimal surface to its complete form
without it becoming unstable at a finite size. One of our
primary results is the identification, for the Meeks surface,
of a one-parameter family of contours defining a sequence
of bounded surfaces which, like the catenoid, are stable
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below a threshold parameter value and unstable above. We
deduce the point of instability through a combination of
straightforward analytical approximations and numerical
studies of the Jacobi equation. In a further connection
between systolic geometry and stability theory, we show
that the systolic curve on the unstable minimal surface
approaches the maximum of the unstable eigenfunction,
confirming one’s intuition that the instability begins at the
narrowest part of the neck.
The Meeks Möbius surface [22] is most compactly

given by its Weierstrass-Enneper representation I [23] in
terms of a holomorphic function fðζÞ ¼ iðζ − 1Þ2=ζ4 and a
meromorphic function gðζÞ ¼ ζ2ðζ þ 1Þ=ðζ − 1Þ, with fg2

holomorphic. These functions provide the components
of the vector Φ ¼ ½fð1 − g2Þ; ifð1þ g2Þ; 2fg� which, with
ζ ¼ uþ iv, determines the surface Xðu; vÞ ¼ ℜe½R dζ0Φ�,
where Xðu; vÞ ¼ ðx; y; zÞ are the Cartesian coordinates.
This representation guarantees that the mean curvature
vanishes and that the parametrization (u; v) corresponds
to “isothermal” coordinates. Indeed, the metric is
ds2 ¼ Wðdu2 þ dv2Þ, where W ¼ jfj2ð1þ jgj2Þ2, and the
Gaussian curvature is K ¼ −4jg0j2jfj−2ð1þ jgj2Þ−4.
If we write u ¼ r cos θ, v ¼ r sin θ, then the surface

takes on a particularly simple form

x ¼ −α sin θ − β sin 2θ − γ sin 3θ; ð1Þ

y ¼ α cos θ þ β cos 2θ þ γ cos 3θ; ð2Þ

z ¼ −2α sin θ; ð3Þ

where α ¼ r − r−1, β ¼ r2 þ r−2, γ ¼ ð1=3Þðr3 − r−3Þ.
Alternatively, if r ¼ ep, α ¼ 2 sinhp, β ¼ 2 coshð2pÞ,
and γ ¼ ð2=3Þ sinhð3pÞ. The complete surface is traced out
as a double-covering for 0 ≤ r ≤ ∞ (−∞ ≤ p ≤ ∞) and
0≤ θ≤ 2π. These representations make clear, immediately,
the fundamental symmetry of the surface: Xðr; θÞ ¼
−Xð1=r; θ þ πÞ or Xðp; θÞ ¼ −Xð−p; θ þ πÞ. While the

(r; θ) parametrization is more intuitive, with r a radial
coordinate, the (p; θ) choice is often more convenient for
algebraic and computational purposes.
When the parameter r (or p) is restricted to a finite

interval whose endpoints are consistent with the symmetry
of the surface, i.e., r0 ≤ r ≤ 1=r0, the resulting surface is a
Möbius strip with boundary (xðr0; θÞ; yðr0; θÞ; zðr0; θÞ).
Figure 1 shows the progression of surface shapes as r0 is
decreased from unity. Since the surface given by r0 → 1 is
clearly stable, while that for r0 → 0 is unstable, there must
exist a finite critical value that determines the onset of
the instability. That critical point can be determined by
finding the value of r0 for which the second variation of
the area functional vanishes. This is equivalent to seeking
a displacement field ψðu; vÞ normal to the surface which
vanishes on the boundary and is a solution of the Jacobi
equation, ð∇2 − 2KWÞψ ¼ λWψ , for the particular case
λ ¼ 0, where now ∇2 ¼ ∂uu þ ∂vv. For a physical soap
film of thickness h, λ ¼ −ρhω2=σ, where ρ is the film
density, σ is the surface tension, and ω is the oscillation
frequency [15]. The condition λ ¼ 0, thus, marks the
boundary between oscillatory behavior and instability. In
the variables (p; θ), the Jacobi equation is

ψpp þ ψθθ þ 4
cosh 2pþ 2 sinhp cos θ þ 2sin2θ
ðcoshp cosh 2p − sinh 2p cos θÞ2 ψ ¼ 0:

ð4Þ
Because we are dealing with a nonorientable surface, we
use an orientable double covering, for which it is possible
to find a global normal vector field. In this double covering,
the normal vector satisfies n̂ðp; θÞ ¼ −n̂ð−p; θ þ πÞ
[equivalently n̂ðr; θÞ ¼ −n̂ð1=r; θ þ πÞ]. Thus, in order
to obtain a physically meaningful displacement vector field
ψ n̂, we require ψðp; θÞ ¼ −ψð−p; θ þ πÞ [equivalently
ψðr; θÞ ¼ −ψð1=r; θ þ πÞ].
First, we discuss the numerical solution of Eq. (4),

and the determination of the critical value pc and the

FIG. 1 (color online). Incomplete Meeks Möbius minimal surfaces. Two views are shown for each choice of the parameter r0. Surfaces
for r0 ≲ 0.54 are linearly unstable.
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unstable eigenfunction ψc. Because of the antisymmetry
discussed above, it is only necessary to solve the
problem for 0 ≤ θ ≤ π, with the boundary condition
ψðp; 0Þ ¼ −ψð−p; πÞ, along with the Dirichlet boundary
condition at the bounding curve, ψð�pc; θÞ ¼ 0. These
boundary conditions can readily be accommodated within a
standard finite-difference scheme on a regular grid in both θ
and p. If, however, one uses the more physical parameter r,
then a hyperbolic grid rðmÞ ¼ r2m=M−1

0 for m ¼ 1; 2;…;M
allows easy implementation of the boundary conditions.
We determined the instability threshold by finding, for a
coarse grid spacing, the value of p for which there first
appears a zero eigenvalue of the matrix corresponding to
the finite-difference discretization of Eq. (4). Refinement
of the grid was used to sharpen this numerical estimate to
pc ≃ −0.607 (rc ≃ 0.545).
Figures 2(a) and 2(b) show, for p ¼ pc and on the

double covering, the quantities KW, which enters the
Jacobi equation (4), and the numerically obtained critical
mode ψc. The maximum amplitude of the Gaussian curva-
ture term is anticorrelated with the maxima of the modes.
The latter [Fig. 2(b)] are located approximately at the center
of each covering [Fig. 2(b)]. Because the Jacobi equation
describes the oscillations of a curved soap film, and the
Gaussian curvature term is small in the interior of the domain,
themode shape approximates that of a flat film clamped at its
edges. This lowest eigenfunction has the minimum possible
number of nodes. Figure 2(c) shows the critical Meeks
surface (p ¼ pc) color coded by the amplitude of ψc. The
maximum amplitude occurs in the “throat” of the surface,
which is locally similar in shape to a catenoid, and directly
opposite the nodal line in ψc at θ ¼ π. This nodal line
coincides with the line of symmetry of the surface, which is
the unique straight line on it. The arrows inFig. 2(c) represent
the vectorial displacement field ψcn̂ along the systolic curve
(discussed below). The pattern of displacements shown is
qualitatively identical to that observed in experiment [16,18],
where the interface collapses towards the frame.
From the results in Fig. 2, we see that the critical mode

ψc has a large amplitude in regions where the Gaussian
curvature term −2KW is small, and the Dirichlet condition

ψc ¼ 0 on the surface boundary dominates the locally
large value of the Gaussian curvature there. Therefore, the
presence of K makes only a minor change to the shape
of the unstable mode. This lack of correlation between
KW and ψ suggests that an approximate analytical
approach to solving the Jacobi equation is to reduce it to
a one-dimensional equation by averaging over the periodic
variable θ. This integration yields the approximate Jacobi
equation ψ̄pp − 2KW ψ̄ ≃0. The average KW is a compli-
cated combination of hyperbolic functions that, remark-
ably, can be represented with great accuracy (∼1%) by a
sum of sech-squared terms,

ψ̄ppþU0fsech2½αðp−aÞ�þ sech2½αðpþaÞ�gψ̄ ¼ 0; ð5Þ

where a ¼ 0.4456, aα ¼ tanh−1ð ffiffiffiffiffiffiffiffi
5=7

p Þ, and U0 ¼ α2.
Thus, integration over the angular variables for both the
catenoid and the Meeks surfaces yields one-dimensional
Schrödinger equations, the former having a sech-squared
potential, and the latter with one of the variants of the
Morse-Rosen double-well potential [26] introduced by Stec
[27]. Through the change of variables q ¼ tanhαp, Eq. (5)
reduces to a Heun equation [28]. Rather than dealing with
a global solution of that equation, we focus only on the
region far from the double-well minima

ð1 − q2Þψqq − 2qψq þ
1þ κ2

1 − κ2
ψ ¼ 0; ð6Þ

where κ2 ¼ tanh2ðαaÞ ¼ 5=7. Thus, ð1þ κ2Þ=ð1 − κ2Þ ¼
nðnþ 1Þ for n ¼ 2. This has the solution ψ ¼ Q2ðpÞ ¼
ðαp=2Þ½3tanh2ðαpÞ − 1� − ð3=2Þ tanhðαpÞ, the Legendre
function of the second kind. The requirement that ψ ¼ 0
on the boundary is satisfied by p� ¼ �0.6178… such that
Q2ðp�Þ ¼ 0, which yields r0 ≃ 0.539, within 1% of the
numerical result.
When the condition KWψ ≃ KW ψ̄ is satisfied, the

resulting one-dimensional equation (5) is a Schrödinger
equation for a bounded double-well potential. A character-
istic of this potential is that for energies close to zero (i.e.,
energies close to those of free particle states) approximating

FIG. 2 (color online). The critical surface. (a) The term −2KW in the (r; θ) plane for r0 ¼ 0.545. (b) Unstable eigenfunction ψc on the
double covering. (c) Critical surface, color coded by the magnitude of ψc.
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the double well potential by two delta functions of
appropriate amplitude and located at the position of the
minima yields a surprisingly good first approximation to
the wave function. For the Meeks Möbius surface, the
potential is replaced by U0½δðpþ aÞ þ δðp − aÞ�. The
resulting mode is an antisymmetric function

ψ ¼ N

8><
>:

−U0a2 − ðU0a − 1Þp p < −a
p jpj ≤ a

U0a2 − ðU0a − 1Þp p > a;

ð7Þ

where N is a normalization constant. For the values U0 ≃
7.73 and a≃ 0.445 listed above, the mode vanishes at
pc ≃�0.627 which corresponds to 0.534 ≤ r ≤ 1.872.
This is a remarkably good result given the simplicity of
this type of approximation, which is used in many areas
of quantum mechanics [29]. Similarly, for a single-well
potential (appropriate to the catenoid [15]), by replacing
2sech2p with 2δðpÞ the resulting mode consists of a
symmetric triangular function with the correct linear
asymptotic growth as x → �∞. The critical value pc that
determines stability of the shape is pc ¼ 1, instead of the
exact value pc ¼ 1.2, which, though not as accurate as for
the double well, is still not a bad approximation.
An alternative approach to the determination of pc is to

view the term−2KW in the Jacobi equation as a perturbation
ϵV to the Dirichlet eigenvalue equation ð∇2 þ ϵVÞψ ¼ λψ
for a flat rectangular membrane. Writing ψ ¼ ψ0þ
ϵψ1 þ � � � and λ ¼ λ0 þ ϵλ1 þ � � �, one finds the standard
perturbation theory result λ1¼

R R
dθdpVψ2

0=
R R

dθdpψ2
0.

Then, using the lowest eigenfunction consistent with the
boundary conditions, ψ0 ∼ cos θ cosðπp=2p0Þ, the critical
value pc is that which makes the first-order-corrected
eigenvalue equal to zero. We obtain, numerically, the
condition pc ≃ 0.536 (rc ≃ 0.585), in good agreement with
the results above.
We now turn to the systolic curve on a Meeks Möbius

surface. In the absence of analytical results on the shape of
such a geodesic, we employ a numerical scheme introduced
recently [18]. This method is based on the use of the
curve length L as a Lyapunov function in a gradient flow
relaxational scheme. In ðr; θÞ coordinates,

L ¼
Z

2π

0

dθ

�
E

�
dr
dθ

�
2

þ G

�
1=2

; ð8Þ

where E ¼ Xr ·Xr, and G ¼ Xθ ·Xθ. If we define
g ¼ Er2θ þG, then we use a local Rayleigh dissipation
function [30] to obtain, rt ¼ −ð1= ffiffiffi

g
p ÞδL=δr, which is the

nonlinear diffusion equation

∂r
∂t ¼

1ffiffiffi
g

p ∂
∂θ

�
Effiffiffi
g

p ∂r
∂θ

�
−

1

2g

�
Er

�∂r
∂θ

�
2

þGr

�
: ð9Þ

This is a version of the curve-shortening equation [31] on a
curved manifold [32]. Our goal is to find the function rðθÞ
for which the rhs of (9) vanishes. Since the Meeks surface
contains the circle r ¼ 1, this may be taken as a suitable
initial condition for the dynamics. This curve naturally has
a linking number of 1 with respect to the boundary curve, a
property that is maintained throughout the evolution.
The numerically obtained systolic curve CM for the critical

Meeks surface is shown in Fig. 3(a), superimposed on the
surface. As in other examples studied to date [18], much
of this systolic curve lies on the catenoidlike neck of the
surface. Figure 3(b) shows, on a contour plot of the unstable
eigenfunction ψc, that CM passes very near the maximum
of the unstable mode. An approximate analytical form
for the systole is cos θ ¼ −ð1=2Þ sinhp − coshp tanh 2p,
which coincides with the result of extremizing the denom-
inator in Eq. (4) with respect to p only. This approximation
shares with the full numerical result the feature of tracking
the ridge in the Gaussian curvature and passes near the
maximumof themarginal eigenfunction. Previously [18],we
conjectured that if the local systolic curve C is linked to the
boundary ∂S, then the singularity that occurs when the
minimal surface becomes unstable will be on ∂S, otherwise,
it will be in the bulk. The present results lead to the additional

FIG. 3 (color online). Properties of the systolic curve. (a) The
critical Meeks Möbius surface with the numerically obtained
systolic curve (green), and approximation (red). (b) Systolic
curve (green) and approximation (yellow) traced out in the (r; θ)
plane, superimposed over the unstable mode.
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conjecture that,when a neck on aminimal surfaceS becomes
unstable, the local systolic curve C passes through the
neighborhood of the maximum of the unstable mode.
In the sameway that the catenoid serves as a paradigm for

the study of bulk singularities that follow from instabilities
of an orientable minimal surface, the results presented
here suggest that the truncated Meeks Möbius strip is the
counterpart for the study of boundary singularities occurring
in nonorientable surfaces. Furthermore, the correspondence
between systolic curves, the critical points of the curvature
potential −2KW, and the structure of the unstable eigen-
function is reminiscent of Witten’s formulation of Morse
theory [33] and suggests an avenue for future analysis.
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