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The wave nature of radiation prevents its reflections-free propagation around sharp corners. We
demonstrate that a simple photonic structure based on a periodic array of metallic cylinders attached to
one of the two confining metal plates can emulate spin-orbit interaction through bianisotropy. Such a
metawaveguide behaves as a photonic topological insulator with complete topological band gap. An
interface between two such structures with opposite signs of the bianisotropy supports topologically
protected surface waves, which can be guided without reflections along sharp bends of the interface.
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Science thrives on analogies, and a considerable number
of inventions and discoveries have been made by pursuing an
unexpected connection to a very different field of inquiry.
For example, photonic crystals (PhCs) have been referred
to as “semiconductors of light” [1,2] because of the far-
reaching analogies between electron propagation in a crystal
lattice and light propagation in a periodically modulated
photonic environment. However, one aspect of electron
behavior, its spin, escaped emulation by photonic systems
until the recent [3–7] invention of photonic topological
insulators (PTIs). The impetus for these developments in
photonics came from the discovery of topologically non-
trivial phases in condensed-matter physics [8–13] that give
rise to topologically protected edge states immune to
scattering. The realization of topologically protected trans-
port in simple PhCs would circumvent a fundamental
limitation imposed by the wave equation: the inability of
reflections-free light propagation along a sharply bent path-
way. Topologically protected electromagnetic states could be
used for transporting photons without any scattering, poten-
tially underpinning new revolutionary concepts in applied
science and engineering.
Several approaches to making PTIs have been explored

across the electromagnetic spectrum, including magnetic
photonic crystals [14–18], cavity arrays [3], coupled ring
resonators [4,19], bianisotropic metamaterials [5], synthetic
magnetic fields [6], and coupled helical fibers [7]. These
approaches can be broadly separated into two groups:
(a) those that rely on breaking the time-reversal symmetry
(TRS) [6,14–18] and (b) those that do not violate the TRS
[4,5]. We refer to the latter group of PTIs, which emulate
the quantum spin Hall (SH) effect [9–13] and do not require
an external magnetic field, as SH-PTIs. It was shown [5]
that wave propagation in bianisotropic spin-degenerate
metamaterials arranged into hexagonal PhCs can be

described using the effective Kane-Mele Hamiltonian
(KMH) introduced earlier [20,21] to model graphenelike
topological insulators with strong spin-orbit coupling
(SOC). The macroscopic size [4,19] and considerable
complexity [5] of the proposed SH-PTIs rules them out
as promising platforms for bending light on a wavelength
spatial scale. One such greatly simplified photonic platform
shown in Fig. 1(a) is proposed in this Letter: a bianisotropic
metawaveguide (BMW) designed for emulating the KMH
and providing photonic topological insulation.
The BMW is composed of the parallel-plate metal

waveguide filled with a periodically arranged hexagonal
array of metallic cylinders connected to the top and/or
bottom metal plates located at z ¼ �h0=2. The finite
bianisotropy [22] is generated by a finite vacuum gap
(g1 ≠ 0) between the rods and one of the metal plates as
illustrated in Fig. 1(c). The metal is modeled as a perfect
electric conductor; i.e., the tangential component of the
electric field vanishes at the metallic surface. In the
analytically tractable case of g1 ¼ 0, the two (potentially
degenerate) decoupled modes of interest of such a PhC
waveguide can be classified as TM (with nonvanishing
field components Ez, Hx, and Hy) and TE (with non-
vanishing Ex, Ey, Hx, Hy, and Hz) modes [23]. Under the
Bloch ansatz, the following field decomposition is assumed
by retaining just two lowest-order transverse modes:
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where r⊥ ¼ ðx; yÞ, k⊥ ¼ ðkx; kyÞ are the Bloch wave

numbers inside the Brillouin zone (BZ), hn;k⊥z ðr⊥Þ and
en;k⊥z ðr⊥Þ are the normalized periodic field profiles such
that

R
cell dVðϵjen;k⊥ j2 þ μ0jhn;k⊥ j2Þ ¼ 1, and the n ¼ −;þ

index refers to lower (upper) propagation bands. Note
that in limiting the expansion basis and thereby con-
straining the z dependence of the fields, the above ansatz
is a crucial simplification that is needed to make further
analytic progress. However, all numerical results shown in
Figs. 1–4 are obtained using first-principles electromag-
netic simulations of COMSOL Multiphysics that are not
subject to the reduced expansion basis approximation given
by Eqs. (1) and (2).
The eigenfrequencies ωnðk⊥Þ are doubly degenerate

for k⊥ ¼ �ex4π=3a0 corresponding to the KðK0Þ edges
of the Brillouin zone shown in the inset to Fig. 1(b). The
hexagonal symmetry of the “photonic graphene” [24]
lattice guarantees the appearance of the Dirac cone for
the decoupled TE and TM modes. The field profiles of the
two degenerate modes are shown in Fig. 1(c). The photonic
band structure plotted in Fig. 1(b) shows the degenerate TE

and TM Dirac cones overlapping at the K point of the
Brillouin zone at the frequency ωD ¼ ωTE

D ¼ ωTM
D . For a

given period a0, the degeneracy between TE and TM
modes’ frequencies and group velocities vD ≡ ∂ω=∂k is
obtained by the judicious choice of h0 and the cylinders’
diameter d0. Such mode degeneracy is essential [5] for
establishing spinlike linear combinations of the TE and TM
modes that can be coupled to each other by a bianisotropic
perturbation of the photonic structure.
Opening an air gap breaks the σz mirror symmetry

and introduces the requisite bianisotropic response of
the metawaveguide [22] as schematically explained in
Fig. 1(a), right insets: the electric field in the gap between
the cylinder and the plate ExðyÞ induces antisymmetric
currents jxðyÞ producing the net orthogonal magnetic
moment myðxÞ and vice versa. The photonic band structure
(PBS) of the resulting bianisotropic crystal (g1 ¼ g0 ≡
0.15a0) is shown in Fig. 1(d), indicating that a complete
photonic band gap is formed in the 0.72 < ωa0=2πc <
0.77 frequency range. As analytically demonstrated below,
the finite rod-plate gap mimics the SOC in a graphenelike
photonic structure, thereby turning the BMW shown in
Fig. 1 into a PTI as long as the lowest-order TE and TM
modes are dominant.
The effective Hamiltonian for the photonic states of the

BMW in the vicinity of the K point is constructed by
combining two methodologies: (a) degenerate perturbation
theory originally developed [15] for nonreciprocal photonic
crystals supporting a doubly degenerate TM mode and
(b) the classic Slater theory [25] describing the modifica-
tion of the modes of an electromagnetic cavity by the
perturbation of its boundaries (see the Supplemental
Material for detailed derivations [26]). These two tech-
niques are applied to a BMW perturbed by an asymmetric
addition of a metal volume (“washer”) shown in the
Fig. 1(a) right inset, which is conceptually equivalent to
the asymmetric gap as far as its bianisotropic response is
concerned. The unperturbed basis for the perturbation
theory at the K point consists of the TE and TM modes
whose field profiles are shown in Fig. 2. The modes’
dispersion relations ω�ðδkÞ ¼ ωe;m � vDjδkj are linear
[15] in δk≡ k − K in the vicinity of the Dirac point, at
which the frequencies of the TE and TM modes are ωe;m,
respectively.
Finite δk ≠ 0 breaks the degeneracy for each mode and,

for δk > 0, renders the upper (lower) band modes forward
(backward) propagating as shown in Fig. 2. We also
observe that the basis eigenmodes become linearly polar-
ized (LP) based on the average direction of their magnetic
field: the forward (backward) modes eþ ðm−Þ are x
polarized while the backward (forward) modes e− ðmþÞ
are y polarized. The boundary perturbation couples the ith
and jth basis modes with the normalized coupling coef-
ficient given by Δij ¼ − R

ΔV ðe�i · ej − h�i · hjÞdV, where
ΔV is the volume displaced by the metal washer. Using a

FIG. 1 (color online). BMWas a photonic topological insulator.
(a) Schematic of the BMW. Part of the top metal plate is removed
to reveal the “bed-of-nails” structure below. The enlarged regions
on the right illustrate the origin of the bianisotropic response.
Right inset: an equivalent way to produce bianisotropy by adding
an asymmetrically placed metallic volume (washer) around the
rod. (b) PBS of spin-degenerate metawaveguide (g1 ¼ 0) with TE
and TM modes forming doubly degenerate Dirac cones at KðK0Þ
points. (c) Field profiles of the degenerate TE and TM mode at
the K point. Colors: energy density. Arrows: electric field for the
TM mode and magnetic field for the TE mode. Yellow dashed
line: metallic border. (d) PBS with the band gap induced by the
bianisotropy of the metawaveguide (g1 ¼ g0). Dashed lines in (b)
and (d): TE and TM bands of interest. BMW parameters:
h0 ¼ a0, d0 ¼ 0.345a0, g0 ¼ 0.15a0.
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vector representation ae ¼ ½ae− ; aeþ� and am ¼ ½am− ; amþ�
[where aeðmÞ� is shorthand for a�eðmÞðK þ δkÞ] for the
complex-valued amplitudes of the expansion basis, we
calculate the perturbed frequencies ω0ðδkÞ by solving the
following eigenvalue equation:

�
ωeð1þ ΔeeÞÎ − vDjδkjσ̂z −ωeΔemσ̂y

−ωmΔemσ̂y ωmð1þ ΔmmÞÎ − vDjδkjσ̂z

�

×

�
ae
am

�
¼ ω0

�
ae
am

�
; ð3Þ

where σ̂x, σ̂y, σ̂z are the Pauli matrices, and Î is a 2 × 2 unity
matrix.
According to Eq. (3), the perturbation has two effects

on the modes. First, the modes’ frequencies ωe;m are
renormalized by the diagonal Δee=Δmm terms. Second,
the cross-coupling bianisotropic terms Δemðd1; h1; z1Þ ¼R
ΔV h

�
e · hmdV ¼ −Δemðd1; h1;−z1Þ satisfy the following

selection rule that follows from the field profiles shown in
Fig. 2: they couple the TE and TM modes propagating
in the opposite directions. The antisymmetry of Δem with
respect to z1 follows from the eigenmodes’ symmetry:
he;x=yðx; y;−zÞ ¼ −he;x=yðx; y; zÞ and hm;x=yðx; y;−zÞ ¼
þhm;x=yðx; y; zÞ.
The effective Hamiltonianℋem

K represented by the 4 × 4

matrix in the lhs of Eq. (3) can be transformed to ℋ↑↓
K ¼

Uℋem
K U−1 by a unitary transformation from the LP basis

AK ¼ ½ae; am� of the TE and TM modes to a circularly
polarized (CP) basis ΨK ¼ UAK of spin states, where the
transformation matrix U is given by the following
Kronecker product:

U ¼ 1

2

�
1 − β 1þ β

1 − β −1 − β

�
⊗

�
e−iϕ=2 ie−iϕ=2

−eiϕ=2 ieiϕ=2

�
; ð4Þ

where 2ωD ¼ ωe þ ωm, 2ΔωD ¼ ωe − ωm, 2ω0
D ¼

ωeð1þ ΔeeÞ þ ωmð1þ ΔmmÞ, 2Δω0
D ¼ ωeð1þ ΔeeÞ−

ωmð1þ ΔmmÞ, and β ¼ ΔωD=2ωD and the phase ϕ is
defined by jδkjeiϕ ≡ δkx þ iδky. It is possible to design the
“dressed” frequencies ω0

e ¼ ωeð1þ ΔeeÞ and ω0
m ¼

ωmð1þ ΔmmÞ to be equal to each other, in which case
the spin-degeneracy [5] condition Δω0

D ¼ 0 is satisfied.
The resulting eigenvalue equation ℋ↑↓

K ΨK ¼ ΩΨK then
assumes a block-diagonal form"
vDδk · σ þ ωDΔemσ̂z 0

0 vDδk · σ − ωDΔemσ̂z

#"
ψ↑

K

ψ↓
K

#

¼ Ω

"
ψ↑

K

ψ↓
K

#
ð5Þ

where σ ¼ ðσ̂x; σ̂yÞ, and ψ↑ð↓Þ
K ≡ ½ψR;↑ð↓Þ

K ;ψL;↑ð↓Þ
K � are the

spin-up (-down) components of the ΨK ≡ ½ψ↑
K;ψ

↓
K� eigen-

vector, and Ω ¼ ω0 − ω0
D is the detuning from the dressed

Dirac frequency ω0
D.

The physical meaning of the new spin-polarized CP
photonic states (“R” for right and “L” for left) is clarified
by calculating U−1ΨK to obtain the following expressions
in the original TE and TM LP basis under the β ≪ 1

assumption: ΨR=L;↑
K ¼ ½1;∓i; 1;∓i� and ΨR=L;↓

K ¼ ½1;∓i;
−1;�i�. Therefore, the relative phase between TE and TM
modes represents [5] the spin degree of freedom (DOF),
and the handedness (i.e., the phase shift between the
two LP components) represents the orbital DOF. By
introducing Pauli matrices ŝ that act on the spin compo-
nents ofΨK, Eq. (5) can be written in a more compact form
asℋ↑↓

K ¼ vDŝ0ðδkxσ̂x þ δkyσ̂yÞ þ ωDΔemŝzσ̂z, where ŝ0 is
a unity matrix, and the Kronecker product shorthand (e.g.,
ŝ0σ̂z ≡ ŝ0 ⊗ σ̂z) is used.
Expanding the space of photonic states to include the

vicinities of both K and K0 points, i.e., by introducing the
8-component spinor Ψ ¼ ½ΨK;ΨK0 �, the combined 8 × 8
effective Hamiltonian matrix can be written (see the
Supplemental Material [26]) as

ℋ ¼ vDðδkxτ̂zŝ0σ̂x þ δkyτ̂0ŝ0σ̂yÞ þ ωDΔemτ̂zŝzσ̂z; ð6Þ

where τ̂z and τ̂0 are the Pauli and identity matrices acting on
the subspace combining the K and K0 points of the BZ.
Because Eq. (6) is identical to KMH [20], it defines the
photonic modes that have the same topological nature as
the electronic states in graphene with strong SOC described
by the last term. Therefore, the BMW is an example of a
SH-PTI that possesses a spectral band gap Δωgap ¼
2ωDjΔemj induced by the bianisotropy. An interface
between two BMWs with opposite signs of Δem exempli-
fied in Fig. 3(a) is, therefore, expected to support two pairs
[5,14] of topologically protected surface waves (TPSWs).
This prediction is confirmed using first-principles COMSOL

FIG. 2 (color online). Dirac dispersion of the dipolar TE and
dipolar TM modes in the vicinity of the K point. The in-plane
magnetic field profiles (jhxj on the left and jhyj on the right) are
overlaid atop the band structure to show the dominant component
of the magnetic field. The positive- and negative-group-velocity
bands are labeled with “þ” and “−” signs.
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simulations of the PBS of the double-BMW plotted
Fig. 3(b), where four spin-locked surface photonic
modes (one forward-propagating spin-up pair and another
backward-propagating spin-down pair) are plotted with
solid lines.
Several important properties of TPSWs can be observed

from Fig. 3. First, these are indeed surface modes because
their energy density is tightly confined to the topological
interface as shown in Fig. 3(c). Second, the polarization
state of TPSWs is spatially entangled [5] with the spin state.
Specifically, from the directional flow of the Poynting flux
plotted with arrows in Fig. 3(c) inside the rod-plate gap,
we observe that the spin-up and spin-down surface modes
have opposite handedness: R ðLÞ for the spin-up (spin-
down) states. This essential feature enables directional
excitation of TPSWs with a single rotating electric or
magnetic dipole. By placing an L-polarized dipole inside
the air gap adjacent to the interface, backward-propagating
spin-down TPSW is excited as shown in Fig. 3(d). In
contrast, directional excitation of topologically trivial sur-
face waves requires a series of phase-shifted dipoles placed
along the propagation directions [26], thereby increasing
the device size.
Third, the gapless crossing of the surface modes corre-

sponding to the different spin states shown in Fig. 3(b)
indicates the lack of spin flipping. The spin conservation

results in a topologically protected spin-polarized transport
of TPSWs: their backscattering is expected to be sup-
pressed even in the presence of various classes of structural
perturbations (e.g., the variation of the gap size g1 or gap
position z1 ¼ �h0=2) that preserve spin degeneracy.
Below, we concentrate on a specific type of imperfection:
a sharp bend of the interface shown in Fig. 3(d). Because
spin degeneracy is maintained by such imperfections, we
can expect that it should be possible to direct the flow of
TPSWs along the bend without reflections. The results of a
COMSOL simulation are shown in Fig. 3(d), where we have
investigated the transmission of a spin-polarized TPSW
launched from the upper-right corner of a zigzag interface
between two BMWs with opposite bianisotropy coeffi-
cients Δem. High broadband transmission of TPSWs, such
that TðωÞ > 0.9 is achieved for 98% of the entire band gap,
is observed, indicating that two 120° turns of the wave
along the correspondingly bent topological interface are
accomplished with negligible reflection. Although the
demonstrated topological protection is conceptually under-
stood from our analytic theory that relies on the limited
basis expansion given by Eqs. (1) and (2), the actual results
shown in Fig. 3 are obtained using first-principles electro-
magnetic simulations.
The unusual nature of such reflection-free propagation of

an electromagnetic wave along a sharply curved interface
can be appreciated by comparing it with the case of a
standard (topologically trivial) interface between two
photonic crystals with overlapping photonic band gaps.
We make such a comparison by considering an interface
between two topologically trivial PhCs shown in Fig. 4(a).
Each PhC consists of a hexagonal array of identical
semicircular metal rods attached to two metallic plates
for vertical confinement. The interface between these PhCs
is introduced by changing the orientation of the rods. The
two PhCs possess identical gapped spectra shown in
Fig. 4(b). Different surface terminations of the PhCs form
an interface supporting topologically trivial surface waves
(TTSWs) [33] inside the band gap. The propagation band
ωTTSW
TM ðkxÞ of the TTSW shown by the blue lines in

Fig. 4(b) was numerically calculated for the TM polariza-
tion. Any wavelength-scale perturbation of the interface
(e.g., change in the rod’s size or orientation), including a
sharp bending of the interface, can induce reflections by
scattering the forward-moving TTSW into its backward-
moving counterpart.
One such zigzag propagation path corresponding to two

120° bends of the domain wall is shown in Fig. 4(c). The
transmission TðωÞ of a TTSW launched by a point dipole
placed in the upper-right corner of the simulation domain
was numerically calculated for a range of frequencies
spanning the entire band gap of the interface-forming
PhCs. The plot of TðωÞ in Fig. 4(d) exhibits two sharp
100% transmission peaks within the band gap region.
These transmission peaks are related to the phenomenon

FIG. 3 (color online). Propagation of TPSWs along the inter-
face between two topologically nontrivial BMWs (a) Side and top
views of the topologically nontrivial interface (dashed line)
between two BMWs introduced in Fig. 1. (b) 1D PBS of a
supercell (single cell along the x direction, 30 cells on each side
of the interface) of the hybridized TE and TM modes. Black
circles: bulk modes, blue lines: TPSW, arrows: spin state.
(c) Color: energy density; arrows: Poynting flux of a TPSWat the
frequency ω indicated by a black arrow in (d). (d) Transmission
spectrum TðΔωÞ through the zigzag path, whereΔω ¼ ω − ωG is
the detuning from the band gap center at ωGa0=2πc ¼ 0.745.
Spin-down TPSWs are excited by placing an L-polarized
electric dipole between the rod and metal plate in the upper
right corner. Red line:T ¼ 0.9; BMW parameters: same as
in Fig. 1.
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of resonant tunneling [34,35] through the cavity formed by
the middle portion (“cavity”) of the zigzag. Their spectral
positions, often referred to as Fabry-Perot resonances, are
determined by the length of the cavity. Backscattering is
essential for the formation of Fabry-Perot resonances
because, at peak transmission, TTSWs undergo multiple
bounces inside the cavity. However, for all other frequen-
cies inside the band gap the transmission is very small.
According to Fig. 4(d), TðωÞ > 0.9 is achieved for just
5.6% of the entire band gap. While it has been recently
demonstrated [36] that it may be possible to reduce
broadband wave reflections from PhC waveguides that
are bent by as much as 90° by carefully designing the
geometry of the bends, the general conclusion holds:
complete elimination of reflections is only possible at
Fabry-Perot resonances. This result should be contrasted
with near-perfect transmission of TPSWs over the entire
band gap through an identical sequence of two bends of the
mode-guiding interface shown in Fig. 3(d).
In conclusion, a simple design of a topological photonic

insulator emulating the Kane-Mele Hamiltonian with
tunable spin-orbit interaction—a BMW—has been intro-
duced. Unlike earlier metamaterials-based designs,
BMWs are nonresonant photonic structures that do not
suffer from high Ohmic losses and could be potentially
scaled to infrared optical frequencies. Domain walls
between BMWs with reversed bianisotropy coefficient
support TPSWs that are formally described as photonic
states with a conserved spinlike degree of freedom

propagating in the direction prescribed by the sign of
the spin. While the standard scalar wave equation in general
prohibits reflectionless propagation of electromagnetic
waves along the paths that are nonsmooth on the wave-
length spatial scale, the multicomponent polarization state
of TPSWs enables their guiding along sharply curved
interfaces with negligible reflection as confirmed by our
first-principles electromagnetic simulations. This unique
functionality makes BMWs a promising platform for
developing various applications in photonics and electro-
magnetics that benefit from compact and reflectionless
routing of electromagnetic energy.
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