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Spin pumping and related phenomena have been observed recently in heavy metals and topological
insulators, where the spin-orbit coupling plays an essential role. We have developed a spin-pumping
formalism that explicitly includes the spin-orbit coupling at interfaces and disorder in the layers. Spin
pumping across an interface with spin-orbit coupling and the attendant backflow are treated on an equal
footing. We resolve some long-standing issues on the conflicting conclusions about the spin-diffusion
length for Pt, and the origin of spin-memory loss at interfaces with heavy metals. In addition, we predict
some heretofore unanticipated spin-pumping phenomena.
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Spin pumping refers to the phenomenon in which a
precessing magnetic layer emits a spin current to the
surrounding nonmagnetic (NM) metallic layers. Since its
first demonstration a decade ago in conventional transition-
metal multilayers [1], experiments on spin pumping have
been extended to topological interfaces [2,3], magnetic
insulators [4], heavy metals [5–11], and semiconductors
[12–14]. Theoretical analyses of these experiments usually
use scattering theory [15] in which the spin current js near
the interface is given by the mixing conductance,

js ¼ ℏ
4π

�
grm ×

dm
dt

− gi
dm
dt

�
: ð1Þ

Here m is a unit vector representing the precessing
magnetization, gr and gi are the real and imaginary parts
of the mixing conductance g≡ gr þ igi ¼

Pð1 − r↑r�↓Þ
where rσ is the reflection coefficient for the spin σ ¼ ↑;↓ at
the interface between NM and magnetic layers.
The conventional theory has been able to explain

general features of spin pumping experiments, such as the
enhancement of the Gilbert damping for thin films and the
charge voltage induced by spin pumping. However, some
glaring omissions of the above formalism are the effects of
disorder, and more importantly the spin-orbit coupling
(SOC) at interfaces. In recent experiments the focus has
been on spin pumping in new materials, e.g., a topological
insulator (TI) in contact with a precessing ferromagnet [2],
where the physics is dominated by SOC at the interface. The
mutual dependence in SOCsystems between themomentum
and spin of conduction electrons means that the spin current
is described by twovectors; i.e., themomentum (the net flow
direction of electrons) and spin polarization (the average
spin direction) depend on the degree of momentum-spin
locking by the SOC. In the case of spin pumping, electrons
pumped from the precessing magnet pass an interface layer
in which the SOC can absorb, rotate, and flip the electron’s
spin; therefore the interface dictates the resulting spin
current in theNM layer. It follows that the spin accumulation

induced in the NM layer creates a diffusive spin current
which is altered by the presence of SOC at the interface; in
addition, the “backflow” [16] has to be reformulated on an
equal footing to that outlined above for interfaces with SOC.
Experimentally, the influence of SOC at interfaces on

spin-dependent transport has been recognized as early as a
decade ago. Giant magnetoresistance (GMR) studies on
Cu/Pt multilayers in the current-perpendicular-to-plane
(CPP) geometry indicated that there must be a significant
spin-memory loss at interfaces between Cu and Pt layers so
as to consistently explain the large amount of experimental
data [17]. To our knowledge, to date no attempt has been
made to explain such a large spin-memory loss. Other
examples are the observation of spin-transfer torque in a
FM=Pt ðFM ¼ Co;NiFe;CoFeBÞ bilayer for which the
physical origin remains hotly debated [18–20], and spin-
pumping experiments in NiFe=Pt by several groups which
have led to a controversy regarding the spin-diffusion length
in Pt; estimates range from a few to a hundred monolayers
[6–11]. The origin of these controversies may be due to the
omission of the SOC at interfaces in the theories used to
analyze the experiments. Also, the novel phenomena
observed at the interface between topological insulator
andNM layers [2] cannot be explained by the present theory.
In this Letter, we provide a derivation for spin pumping

in the presence of SOC at interfaces and with arbitrary
disorder both in the FM and NM layers. It should be noted
that the previous theory used a scattering formalism
approach where the spin current is expressed in terms of
reflection coefficients at interfaces. Reflection and trans-
mission coefficients are most useful for calculating transport
in mesoscopic conductors; however, they are inconvenient
and prohibitively complicated for diffusive systems due to
the presence of a large number of transverse scattering paths
[21]. Here we adopt a more conventional method, i.e., the
linear response approachwithin the adiabatic approximation
where the spin-pumping conductivity is related to a set of
conventional Green’s functions for which disorder can be
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included explicitly. We apply the formalism to address
qualitative as well as quantitative aspects of recent experi-
ments, and predict new phenomena.
Spin-pumping formalism.—Consider a FM/NM bilayer

in which the magnetization of the magnetic layer is
spatially uniform and precessing around a direction
m̂0 such that mðr; tÞ ¼ m0 þ δmðr; tÞ. The interaction
between the spin of an itinerant electron and the magneti-
zation is modeled by the conventional exchange interac-
tion, Vðr; tÞ ¼ −Jexσ ·mðr; tÞ. By using the Kubo
formalism [22], the spin-current density tensor, jαi ðr; tÞ,
where i denotes the direction of transport and α the
direction of spin polarization, is given as

jαi ðr; tÞ ¼
iJex
2

X
β¼x;y

Z
d3r0

Z
dt0Θðt − t0Þ

× h½J α
i ðr; tÞ;Sβðr0; t0Þ�iδmβðr0; t0Þ; ð2Þ

where Sβðr0; t0Þ and J α
i ðr; tÞ are the spin-density and spin-

current-density operators.
In the above equation the retarded response function is

evaluated by using the Mastubara frequency representation.
In the Supplement Material [23], we show that the spin
current can be cast into the following compact form,

jαi ðr; tÞ¼
ℏ
4π

Jexℏ2

2mei

X
β

Z
FM

d3r0

×Tr½σαGRðr;r0;EFÞ∂i
↔
σβGAðr0;r;EFÞ�

dmβ

dt
; ð3Þ

where GA=Rðr; r0;EFÞ is the retarded or advanced 2 × 2

spinor Green’s function and ∂i
↔

the antisymmetric differ-
ential operator.
While the above spin-pumping current density is general,

its usefulness relies on the proper determination of the
position and spin-dependent retarded Green’s function for
specific systems. The simplest example is a spin-conserving
system where the Green’s function is diagonal with respect
to the magnetization vector, i.e.,

Gðr; r0Þ ¼ g↑ðr; r0Þ þ g↓ðr; r0Þ
2

þ g↑ðr; r0Þ − g↓ðr; r0Þ
2

σ ·m;

ð4Þ
where g↑ðr; r0Þ and g↓ðr; r0Þ are theGreen’s functions for the
electron with spin parallel or antiparallel to the magnetiza-
tion. For clarity, we use capital G for spinor Green’s
functions and lowercase g for scalar Green’s functions.
By inserting Eq. (4) into Eq. (3), we find

jiðr; tÞ ¼
ℏ
4π

�
Γre
i ðrÞm ×

dm
dt

− Γim
i ðrÞ dm

dt

�
; ð5Þ

where the spin-pumping coefficient is ΓiðrÞ ¼ Γre
i ðrÞ þ

iΓim
i ðrÞ, and

ΓiðrÞ ¼
Jexℏ2

me

Z
FM

d3r0gR↑ðr; r0Þ∂i
↔
gA↓ðr0; rÞ: ð6Þ

Equation (5) reproduces the spin-pumping formalism,
Eq. (1), except that in the present formulation we express
the spin-pumping conductivity in terms of retarded
and advanced Green’s functions rather than reflection
coefficients. In the limiting case where there is no disorder,
the Green’s functions are directly related to the reflection
coefficients. As we have shown in Ref. [23] (see Sec. S2),
the spin-pumping coefficient defined above reduces to the
mixing conductance in this limit. One advantage of
expressing spin pumping by using Green’s functions is
that the effect of the spin-independent disorder can be
readily included, as we show in Ref. [23] (see Sec. S4).
Note that the imaginary part in Eq. (5) is much smaller than
the real part [28]; we will discard it thereafter.
One application of the present work is to evaluate spin

pumping in the presence of the SOC interface; in this case
the spinor Green’s functions are not diagonal in spin space.
We consider an interfacial Rashba spin-orbit coupling of
the standard form,

VðrÞ ¼ αRδðzÞðk̂ × ẑÞ · σ; ð7Þ
where αR denotes the Rashba coefficient. There are two
essential approaches to include the above Rashba potential
in the Green’s functions. First, we could introduce an
additional term for the boundary condition of the Green’s
function; i.e., the derivative of the Green’s function would
have a jump across the interface, similar to Eq. (S15) for a δ
potential in Ref. [23] (see Sec. S2). Matching boundary
conditions that entail rotation of spinor Green’s functions
makes this approach tedious and difficult. An alternative is
to treat the Rashba interaction as a perturbation such that the
Green’s function can be readily obtained as long as we have
the Green’s function in the absence of the Rashba term. We
find the latter approach is simpler and valid up to second
order in the Rashba potential. The Green’s function may be
obtained via Dyson equation [22], Gðr; r0Þ ¼ G0ðr; r0Þ þR
d3r0Gðr; r0ÞVðr0ÞGðr0; r0Þ, where G0 is the Green’s

function without the spin-orbit coupling. After some cum-
bersome algebra we find to second order in the Rashba
coefficient [see details in Ref. [23] (Eq. S5)] the spin current
near the interface can be written in compact form as

jzð0−Þ ¼
ℏ
4π

J2ex
J2ex þ Δ2

Γ0A1 ·

�
m ×

dm
dt

�
; ð8Þ

at the FM side of the interface, and

jzð0þÞ ¼
ℏ
4π

J2ex
J2ex þ Δ2

Γ0A2 ·

�
m ×

dm
dt

�
ð9Þ

for the NM layer side of the interface. Here Δ is the
imaginary part local self-energy due to disorder, Γ0 the
spin-pumping conductivity across the interface without
disorder, which is the same as the “mixing conductance”
in the scattering formalism, and the matricesA1 andA2 are

PRL 114, 126602 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 MARCH 2015

126602-2



A1 ¼

0
B@

1 0 0

0 1 0

0 0 1þ η

1
CA;

A2 ¼

0
B@

1 − 2η 0 0

0 1 − 2η 0

0 0 1 − 3η

1
CA:

where η ¼ ðαRkF=EFÞ2. From ab initio calculations the
Rashba coefficient has been estimated to be between 0.03
and 3 eV Å for different systems [29]. Given that the Fermi
vector kF is of the order of an inverse angstrom, η is as large
as 0.3 for the systems to be discussed below.
The physical meaning of the diagonal matricesA1,A2 is

as follows: without SOC at the interface the spin current is
polarized in the direction of m × dm=dt throughout the
structure; the Rashba term at an interface makes the spin of
the electron rotate about the axis ẑ × k̂ [see Eq. (7)]. Since
this direction is in the plane of a layer, spins polarized
parallel and perpendicular to the plane of the layers receive
different torques; thus A1 and A2 are not unit matrices.
However, the matrices remain diagonal because the off-
diagonal terms vanish after summing over the momentum
of conduction electrons. In A2, 1 − 2η and 1 − 3η refer to
the spin-memory loss factor for spin currents flowing
across the interface that are polarized parallel and
perpendicular to the interface.
Having determined the spin-pumping current near an

interface, we evaluate the backscattering or backflow of
the spin current that reduces the current arising from spin
pumping. Consider a boundary condition such that the spin
current is zero at the outer boundary of theNM layer; then one
can write the spin current in the layer in terms of its value at
the interface, i.e., jzðz > 0Þ ¼ jzð0þÞ sinh½ðtN − zÞ=λsd�=
sinhðtN=λsdÞ, where λsd is the spin-diffusion length.
Consequently, a spin accumulation μ is established in the
NM layer; this accumulation is polarized transversely to the
magnetization of theFM layer. For this reason the spin current
backscattered into the FM layer is also polarized transversely
to the magnetization of the layer, and decays within a spin-
coherence length, which for a strong ferromagnet such as Co
and Fe is a few monolayers [30], The ensuing difference
between spin accumulations in the NMand FM layers creates
a bias which drives a diffusive spin-current flow towards the
FM layer known as the backflow due to spin pumping [16]. In
previous approaches without SOC, backflow was accounted
for by introducing the mixing conductance across the inter-
face. Here, we include backflow by using Eq. (3) where the
source term, the magnetization dynamics in the FM layer, is
replaced by the spin accumulation μðrÞ in the NM layer, i.e.,

jα;backz ðrÞ ¼ ℏ
2meiC

X
β

Z
NM

d3r0

× Tr½σαGRðr; r0;EFÞ∂z
↔
σβGAðr0; r;EFÞ�μβðr0Þ;

ð10Þ

where C ¼ ðme=ℏ2Þ2lm is a normalization factor, and lm the
mean free path. By using calculations similar to those leading
to Eqs. (8) and (9), the backflow spin current across an
interface is

jbackz ð0−Þ ¼ −
ℏ

2mekF
Γ0A2 · μð0þÞ; ð11Þ

jbackz ð0þÞ ¼ −
ℏ

2mekF
Γ0A1 · μð0þÞ: ð12Þ

By combining currents due to the spin pumping, back-
flow, and diffusive current in the NM layer we finally arrive
at the spin-pumping current for the FM/NM bilayer. In the
NM layer

jzðz > 0Þ ¼ ℏΓ0

4π

J2ex
J2ex þ Δ2

NðzÞAN ·

�
m ×

dm
dt

�
; ð13Þ

where NðzÞ ¼ sinh ½ðtN − zÞ=λsd�= sinh ðtN=λsdÞ; in the FM
layer

jzðz < 0Þ ¼ ℏΓ0

4π

J2ex
J2ex þ Δ2

FðzÞAF ·
�
m ×

dm
dt

�
; ð14Þ

where FðzÞ is 1 at z ¼ 0 and has an oscillatory decay in the
FM layer. The matrices AN and AF are

AN ¼ 1

1þ ξ

0
B@

1 − 2η 0 0

0 1 − 2η 0

0 0 1 − 3η − ξη
1þξ

1
CA;

AF ¼ 1

1þ ξ

0
B@

1þ 4ηξ 0 0

0 1þ 4ηξ 0

0 0 1þ 8ηξþ η
1þξ

1
CA;

where the backflow factor ξ¼ð3=2ÞðΓ0=k2FÞðλsd=lmÞ×
cothðtN=λsdÞ ranges between zero and infinity. ξ ¼ 0 refers
to the case where there is no backflow; thenAF,AN reduce
to A1, A2. ξ ¼ ∞ indicates that the entire spin current
pumped into the NM bulk flows back across the interface;
then AN vanishes and AF is proportional to η which means
that the entire spin current is relaxed at the interface.
Equations (13) and (14) are our main results. In Fig. 1,

we show the spin current in the FM/NM bilayer for various
values of the disorder, SOC strength, and thickness of the
NM layer. We conclude by discussing the salient features of
the dependence of spin pumping on these parameters and
relate our results to existing data.
(1) Spin-memory loss and spin-current absorption at

interfaces.—The loss of spin current at Cu/Pt interfaces was
proposed more than a decade ago. Kurt et al. [17] observed
in their CPP GMR study that the spin current across a Cu/Pt
interface is not continuous. More quantitatively, if the
standard spin-diffusion equations are used to fit the data
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of magnetoresistance, a spin-memory loss parameter, as
large as 90%, at the Cu/Pt interface has to be introduced. The
spin-memory loss cannot be due to strong spin-flip scatter-
ing in the Pt layer since the measured spin-diffusion length
of Pt remains relatively long at 14 nm. We consider such
spin-memory loss as the experimental evidence of the strong
interfacial SOC. Another experimental support of the loss of
spin current at interfaces is the observation that enhanced
damping due to spin pumping saturates at just a few
monolayers of Pt grown on FM films [8]; i.e., a thicker
Pt layer does not increase the damping since the spin current
ismainly lost to the interface. These experiments support our
idea that the SOC at interfaces absorbs a significant portion
of the spin current; quantitative estimates for the loss are
determined from Eqs. (13) and (14) as long as the Rashba
coefficient is known.
(2) Dependence of the spin current on disorder.—

Yoshino et al. have investigated the dependence of the
enhanced damping on the composition of the ferromagnetic
alloy FexNi1−x [31]. It was found that the induced electric
voltage scales with the average saturation magnetization of
the alloy. In our sd model, the saturation magnetization is
proportional to the exchange parameter J2ex, and thus the
spin pumping current, Eqs. (13) and (14), which is

proportional to the enhanced damping parameter, does
predict such dependence in the limit of a strong disorder. In
the previous spin-pumping theory [15], the mixing con-
ductance is independent of the alloy composition.
(3) Resolving the controversy between short and long

spin diffusion length.—Currently there is a lively debate on
the spin-diffusion length of Pt [6–11]. In ferromagnetic
resonance experiments, the thickness dependence of the
damping constant leads to a short length, typically a few
monolayers, while the inverse spin-Hall effect presages a
much longer spin-diffusion length for Pt. This discrepancy
is resolved by noting that the damping enhancement is
mainly associated with absorption of spin current at the
interface, while the inverse spin-Hall effect measures the
spin current in the bulk of the Pt layer. Our formalism,
Eqs. (13) and (14), provides a natural explanation for the
different length scales found from different experiments.
(4) Anisotropy of enhanced damping.—Another predic-

tion fromEqs. (13) and (14) is the anisotropy of the pumping
current depending on whether the axis for the precessing
magnetization is in or perpendicular to the plane of a layer. If
we define the enhanced damping parameter as the loss of
spin current at the interface and in the NM bulk, we find,

α⊥ ∝
1þ 4ηξ

1þ ξ
; ð15Þ

α∥ ∝
1þ 6ηξ

1þ ξ
þ η

2ð1þ ξÞ2 : ð16Þ

The in-plane damping is always larger than the out-of-plane
damping. Early experiments overlooked this anisotropy. In
Fig. 2, we show the anisotropy of the enhanced damping as
the parameters are varied.
(5) Inverse spin Hall from the FM layer.—Equation (14)

explicitly determines the spin current in the FM layer.We are
unable to analytically write down the expression for the
position dependence of FðzÞ due to different Fermi surfaces
in different materials. However, we can estimate the average
spin current, ItF ≡ ð1=tFMÞ

R
0
−∞ dzjðzÞ, in the FM layer by

approximating FðzÞ as an oscillatory decaying function with
a period of Lco¼2π=ðkF↑−kF↓Þ; it follows that ItF ≈
Lcojð0−Þ. The inverse spin Hall in the FM layer converts
the spin current into a voltage proportional to ItF. Such a
voltage has recently been observed inNiFe=YIG bilayers [4].
Finally, we wish to comment that our theory may also be

applied to study the spin pumping in ferromagnetic and
topological insulator bilayers. A spin-pumping-induced
robust spin-Hall voltage has already been observed in
NiFe=Ag=Bi [2] and NiFe=BiSbTeSe [3]. A possible
explanation is that the spin pumping induces a large spin
accumulation near the surface of the topological insulator,
and a conversion between the spin accumulation and
electric current occurs at the momentum-spin-locked sur-
face [32]. We point out that a more quantitative treatment of
spin accumulation and induced current on the surface
of TI’s would have to include the coupling between the

FIG. 1 (color online). Illustration of spin pumping (a) without
and (b) with Rashba SOC at the interface. In both cases, (c) and
(d), the spin current decays oscillatorily within the FM layer and
exponentially in the NM. The maximum spin current jmax occurs
at z ¼ 0−. The dependence of jmax, normalized to its disorder-free
value j0max, on the ferromagnetic exchange constant for several
values of the disorder parameter Δ, (e), where Δ is the imaginary
part of self-energy. The ratio of the interface spin-current jump
Δjint to the spin current relaxed in the NM layer as a function
of the SOC strength for several thickness of the NM layer,
(f) (in-plane spin polarization).
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two-dimensional TI states and three-dimensional metallic
states; this requires a separate study.
In summary, we have developed a spin-pumping formal-

ism in the presence of the SOC at the interface. The position
dependent spin-pumping current as well as the backflow are
analytically expressed in terms of the conventional retarded
Green’s functions. We have applied the formalism to resolve
some long-standing issues on the conflicting conclusions
about the spin-diffusion length, and the origin of spin-
memory loss at interfaces with heavy metals. We also
predict some unanticipated spin-pumping phenomena.
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(b) ϵ ¼ 40%. The dashed lines indicate the effective thickness
of the interface. (c) The difference of the enhanced damping
parameter for the precessing axis perpendicular and parallel to the
layers for ϵ ¼ 10%, and (d) ϵ ¼ 40%. The inset in (a) is from the
experimental data in Ref. [8].
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