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Understanding the composition dependence of the hardness in materials is of primary importance for
infrastructures and handled devices. Stimulated by the need for stronger protective screens, topological
constraint theory has recently been used to predict the hardness in glasses. Herein, we report that the
concept of rigidity transition can be extended to a broader range of materials than just glass. We show that
hardness depends linearly on the number of angular constraints, which, compared to radial interactions,
constitute the weaker ones acting between the atoms. This leads to a predictive model for hardness,
generally applicable to any crystalline or glassy material.
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Rigidity theory [1–4], or topological constraint theory, is
a powerful tool for capturing the atomic topology of glasses
by reducing their network to mechanical trusses [5].
Following this mechanical analogy, a glass can be flexible,
stressed–rigid, or isostatic, if the number of constraints per
atom nc, comprising radial bond stretching (BS) and
angular bond bending (BB), is lower, higher, or equal to
three, the number of degrees of freedom per atom,
respectively. Flexible networks show internal degrees of
freedom, the floppy modes [6], which allow for local
deformations; whereas stressed–rigid ones are completely
locked by their high connectivity. In between, by being
rigid but free of eigenstress [7], compositions exhibiting
an isostatic behavior show some remarkable properties,
such as a space-filling tendency [8], very weak aging [9],
and anomalous behaviors, such as maximal fracture
toughness [10].
One of the major successes of this approach is the design

of the Gorilla© Glass 3 by Corning©, which was created
by atomic-scale modeling before anything had been melted
in the lab [11,12]. Indeed, by capturing the chemical details
of glasses that are relevant to macroscopic properties while
filtering out those that are not, rigidity theory [13–15] has
been used to predict the composition dependence of hard-
ness, H, which characterizes resistance to permanent
deformations under a load. Hence, topological constraint
theory is a promising tool for designing stronger materials,
which has recently been identified as a “grand challenge”
for the future [16–18]. Topological constraint theory has
also been applied to studying the folding of proteins
[19,20]. However, it is still unknown whether it could be
applied to a larger range of materials and, consequently,

used to predict mechanical properties like hardness from
the mere knowledge of composition.
Recently, relying on molecular dynamics (MD) simu-

lations, we showed that rigidity concepts could be applied
to calcium-silicate-hydrate, ðCaOÞxðSiO2Þ1−x−yðH2OÞy, or
C-S-H, the binding phase of concrete [21]. From a
topological point of view, C-S-H is a complex material
as (1) it contains several chemical components, (2) its
structure is anisotropic, inhomogeneous, and partially
crystalline [22–27], and (3) in contrast to chalcogenide
glass for which all bonds and angles are intact, it features
some thermally broken constraints [21]. This provides
motivation to extend the rigidity analysis of C-S-H to a
broad range of compositions. We find that C-S-H under-
goes a rigidity transition with respect to its composition.
We show that hardness does not depend on the total number
of constraints in the network, but only on the weaker ones,
related to angular bond bending. On this basis, we propose
a model for predicting hardness that demonstrates good
results for different families of materials.
The molecular samples of C-S-H with different compo-

sitions were obtained by introducing defects in an 11 Å
tobermorite configuration [28]. The C-S-H structures con-
sist of defective calcium-silicate sheets, separated from
each other by an interlayer spacing, which contains
interlayer water molecules, hydroxyl groups, and charge-
balancing calcium cations. The procedure used to prepare
the samples and validations against a broad range of
experimental values can be found in [29] and in the
Supplemental Material [30].
To apply the topological constraint analysis to C-S-H, we

relied on MD simulations of 150 samples of various
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compositions, the main order parameter being the Ca=Si
atomic ratio. Following the methodology reported in
Ref. [21], we analyzed each MD trajectory to enumerate
BS and BB constraints using a method already well
established for chalcogenide and oxide glasses [35–39].
To count the number of BS constraints that apply to a
central atom, we compute the radial excursion σr of
each neighbor. A low σr is associated with an active BS
constraint, whereas a high σr comes from the absence of an
underlying constraint that would maintain the bond length
fixed around its average value. We perform the same kind
of analysis to enumerate the BB constraints applying to a
central atom 0 by computing the angular excursion σθ
of each angle ˆi0j formed with the i, j first neighbors.
Following this method, the distinction between active and
inactive constraints can be clearly established at the atomic
scale [21,38]. Note that free water molecules are excluded
from this enumeration, as they do not belong to the network
and, thus, do not contribute to its global rigidity. Hence, the
method allows obtaining nc ¼ nBS þ nBB by only relying
on MD.
As shown in Fig. 1, nc decreases with Ca=Si, effectively

separating a stressed-rigid domain from a flexible one.
Specifically, C-S-H shows a rigidity transition according to
composition, from flexible (nc < 3) at a high Ca=Si ratio,
to stressed-rigid (nc > 3) at a low Ca=Si ratio, and an
isostatic behavior (nc ¼ 3) at Ca=Si≃ 1.5. This result
constitutes the first direct evidence of a rigidity transition
in a nonglassy material. It is worth noticing that the
Ca=Si≃ 1.5 transition composition also corresponds to
structural and mechanical transitions. Indeed, the system is
crystalline and transversely isotropic at low Ca=Si ratios,
and amorphous and isotropic at high Ca=Si ratios [29]. This
feature is very similar to what is typically observed in

glasses, since stressed-rigid compositions show a weak
glass-forming ability and tend to easily crystalize [4].
In addition, the change of slope of nc at Ca=Si≃ 1.5
appears to arise from the onefold coordinated H atoms,
which typically stiffen (soften) flexible (stressed-rigid)
networks [40].
For glasses showing such a composition-driven rigidity

transition, like Ge-Se, hardness typically shows a linear
correlation with the average coordination number r̄ [10]
and, therefore, to nc, which is usually given by
nc ¼ 5r̄=2 − 3, when all BS and BB constraints are active.
Following this observation, an attempt to predict the
hardness of oxide glasses via topological constraint theory
has been proposed by Smedskjaer and Mauro [13,14]. This
model relies on the following assumptions: (1) a network
requires a minimum number of constraints per atom
nc ¼ ncrit to be cohesive, i.e., for H to be nonzero; (2) each
additional constraint nc-ncrit then contributes to increasing
H. This leads to

H ¼ ðdH=dncÞ½nc − ncrit�; ð1Þ

where ðdH=dncÞ is a parameter determined empirically and
ncrit was found to be equal to 2.5. Predicted H values were
found to show a good agreement with experimental data for
several borate glasses [13,14].
To check the applicability of Mauro’s model to more

complex materials like C-S-H, we computed H for each of
the 150 simulated samples. The details of the calculation
and the validation versus experiments can be found in
Ref. [29] as well as in the Supplemental Material [30].
Figure 2 shows H with respect to the Ca=Si molar ratio.
Overall, H follows the same trend as nc, namely, a
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FIG. 1 (color online). Number of constraints per atom nc as a
function of the Ca=Si molar ratio. The inset shows the contri-
butions of the radial (BS) and angular (BB) constraints. Lines are
linear fits in flexible and stressed-rigid domains and serve as
guides for the eye.
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FIG. 2 (color online). Computed hardness of C-S-H (white
squares) [29] and comparison with the values predicted by
Mauro’s model (green diamonds) using Eq. (1), and by the
present model using Eq. (2). Colored areas are guides for the eye,
to distinguish the predictions of the two models in the
Ca=Si > 1.5 domain.
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continuous decrease with Ca=Si, with a change of slope
around Ca=Si ¼ 1.5, which suggests that H and nc are,
indeed, correlated. The ðdH=dncÞ and ncrit parameters of
Mauro’s model were then obtained by fitting the computed
H values with respect to nc. Note that Ca=Si is not the only
order parameter of the system; the fraction of adsorbed
water can also change for the different sample, so that nc
and, consequently, the predicted values of hardness do not
depend only on Ca=Si. As can be seen in Fig. 2, Mauro’s
model fails to describe the dependence of H over the full
range of composition as it cannot predict the two different
slopes in the flexible and stressed-rigid domains, respec-
tively. This can be explained by the fact that Mauro’s model
assumes an equivalent contribution of each constraint to the
macroscopic hardness. However, the energy of BB con-
straints is typically lower than that of BS constraints
[38,41], so that both should not necessarily contribute with
the same weight to hardness. Moreover, angular and radial
constraints should have a different contribution to resist
different kinds of deformations like bulk isostatic com-
pression or shearing. As hardness has been shown to be
closely correlated to the resistance to shear [42], we
propose that H should depend mostly on the number of
angular BB constraints per atom nBB. This leads to a
modified model for hardness prediction of the form

H ¼ ðdH=dnBBÞ½nBB − ncritBB�; ð2Þ
where ðdH=dnBBÞ and ncritBB are empirically determined
parameters. This assumption is justified by the fact that,
during hardness measurements, the network rearrange-
ments, occurring around the tip of the indenter, should
follow the lowest energy paths; i.e., they should preferably
involve breakings or reformations of BB constraints, with
energy that is lower than that of BS constraints. In other
words, hardness should be driven only by the weaker
atomic constraints. As shown in Fig. 2, this new model
provides a more accurate prediction of H over the full
composition range for C-S-H.
The correlation between H and nBB for C-S-H can now

be used as a predictive tool. Relying on the MD-based
constraints enumeration in C-S-H, we identified the aver-
age number of constraints created by each element over the
studied range of compositions. The results are reported in
Table I. As expected and observed in silicate glasses [38],

Si atoms are characterized by 4 BS and 5 BB constraints. H
atoms show only 1 BS constraint with their nearest O
neighbor [43]. On average, Ca atoms undergo 5 BS
constraints. This highlights the fact that the effective
number of active BS constraints can differ from the
coordination number, as also reported for Na atoms in
silicate glasses [38]. As opposed to covalent Si-O bonds,
Ca-O bonds are more ionic and nondirectional, so that Ca
atoms do not show any BB constraints [21]. On average,
each O atom shows 1 active BB constraint. Note that O
atoms can show different environments in the system
(bridging or nonbridging oxygen in the silicate network,
and hydroxyl groups attached to Ca atoms between the
layers), which makes it challenging to evaluate the number
of BS constraints they undergo. For greater convenience,
every BS constraint created between O and Si, H, or Ca
atoms have, thus, been fully attributed to the corresponding
cation. Hence, this enumeration permits us to calculate
analytically nBS, nBB, and nc for any stoichiometry (x, y),
where x and y are the molar fraction of calcium oxide
and reacted structural water, respectively. This leads to
nc¼ð11−5x−8yÞ=ð3−xÞ and nBB¼ð7−6xþ6yÞ=ð3−xÞ,
which allows calculating Hðx; yÞ with our model. The
resulting prediction is shown in Fig. 3. More generally, with
the knowledge of ncðx; yÞ, one can now build a ternary
rigidity phase diagram of C-S-H. As shown in Fig. 3,
C-S-H features three domains: (1) likely noncohesive at
high water content, when nc < 2.5 [13], (2) stressed rigid at
high silica content, and (3) flexible in between. The
boundary between the flexible and stressed–rigid domains,
the optimal isostatic compositions, are obtained for nc ¼ 3,
i.e., for 4yþ x ¼ 1.
We now aim to check the extent of applicability of our

model, i.e., if hardness linearly depends on the number of
bond-bending constraints for other materials, for which
both H and nBB are known. Note that Mauro’s model and
the present one are equivalent if nBS and nBB are linearly
dependent on each other, which is the case when all angles
are constrained, so that nBB ¼ 4nBS − 3. This usually holds
for chalcogenide glasses, but not for silicate and borate
glasses, which feature ionic and nondirectional bonds like
Ca-O and Na-O [38]. First, glassy silica (g-SiO2) and
crystalline quartz (c-SiO2) are natural choices to check to
what extent the predictions, based on the model developed
for C-S-H, can be extrapolated to different compositions.
Although they show a similar coordination (fourfold Si and
twofold O atoms), glassy silica differs from quartz by a
broader Si-O-Si angular distribution [37,44,45], such that
the constraint associated to this angle is considered broken
in glassy silica and intact in quartz [37,44]. This leads to
nBB ¼ 1.67 and 2.33 for g-SiO2 and c-SiO2, respectively.
As shown in Fig. 4, experimental H values show a linear
dependence on nBB, which is in agreement with our model,
although the large experimental error bars prevent us from
being more conclusive. Second, H values obtained by

TABLE I. Enumeration of BS and BB constraints created by
each element. Note that BS constraints have been fully attributed
to the cations.

Atom Composition BS BB BS+BB

Si 1-x-y 4 5 9
Ca x 5 0 5
H 2y 1 0 1
O 2-x-y � � � 1 1
Total 3-x
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Mauro et al. [13] for soda lime borate glasses, and used as a
basis to develop Eq. (1), were plotted versus nBB instead of
versus nc in the original work. As shown in Fig. 4, a fairly
linear trend is found, which supports the present model.
Note that, in the original work, the presence of some
additional modifier rigidity, due to clustering effects, was
assumed in order to obtain a linear relationship between H
and nc [13]. This assumption is not needed any more in our
model. Third, as expected, and shown in Fig. 4, the present
model is also valid for chalcogenide glasses. Hence, we
note that, for several different families of materials, hard-
ness is closely correlated to nBB, the number of angular
constraints. This highlights the importance of controlling
the number of weak BB constraints when designing new
materials from the atomic scale. In return, the parameters of
the present model ðdH=dnBBÞ and ncritBB appear to be
material specific and not universal.

Hence, the original Phillips’ topological constraint
theory, which assumes that all constraints are equivalent,
cannot resolve mechanical properties. Indeed, as shown
here, BS and BB constraints contribute differently to the
hardness. We expect that the low energy BB constraints,
which provide modes of deformation associated to lower
activation energy, also play a critical role in the aging of
materials. This model has been applied to silicate, borate,
and chalcogenide materials, which all feature weak BB
constraints. However, for other families of materials, a
better knowledge of the relative strength of each constraint
would allow identifying the weaker ones, which will likely
contribute to the macroscopic hardness.
Overall, these results suggest that rigidity concepts can

be extended to a broader range of materials than just
glasses. By capturing the important atomic topology while
getting rid of the chemical details that ultimately do not
affect macroscopic properties, topological constraint theory
has the potential to be used as an effective predictive
tool to optimize well developed materials, such as ordinary
Portland cement. For example, we can expect isostatic
C-S-H compositions, around Ca=Si ¼ 1.5, to show the
usual properties of isostatic glasses, such as maximal fracture
toughness and very weak aging phenomena [49,50].

This work has been carried out within the framework of
the ICoME2 Labex (ANR-11-LABX-0053) and the
A*MIDEX projects (ANR-11-IDEX-0001-02) cofunded
by the French program “Investissements d’Avenir” which
is managed by the ANR, the French National Research
Agency.
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FIG. 4 (color online). Experimental values of the hardness of
C-S-H (squares) [29], glassy silica (right triangle) [46], quartz
(bottom triangle) [46], soda-lime-borates glasses (diamonds)
[13], Ge-Se glasses (up triangles) [47], and Ge-Sb-Se (circles)
[48] as a function of the number of angular constraints per atom.
Fitting parameters are ðdH=dnBBÞ ¼ 6.5, 9.1, 1.3 (which appear
to scale with the bond energy, i.e., B − O > Si − O=
Ca − O > Ge − Se) and ncritBB ¼ 0.33, 1.2, 0.75 for silicates,
borates, and chalcogenides, respectively. Lines are guides for
the eye.

FIG. 3 (color online). Predictions of the number of constraints
per atom (top) and of the hardness (bottom) as a function of the
composition of C-S-H. The red and blue lines are respective
predictions of the cohesive limit of the system and of the isostatic
compositions. The green, blue, and red points in the top figure
represent the compositions of three selected computed samples
being, respectively, flexible, isostatic, and rigid.
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