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Statistical tools of uncertainty quantification can be used to assess the information content of measured
observables with respect to present-day theoretical models, to estimate model errors and thereby improve
predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful
input to applications and planned measurements. To showcase new opportunities offered by such tools, we
make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using
Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning
Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares
optimization, combined with high-performance computing, can be used to assess the information content
of the new data with respect to a model based on the Skyrme energy density functional approach.
Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the
Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses,
two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose
a constraint that is strong enough to lead to significant changes in the model parameters. The example
discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with
respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory
cycle in the scientific method.
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Introduction.—Our understanding of heavy, complex
nuclei lies at the heart of many basic science questions,
such as chemical evolution, neutron star structure, synthesis
of superheavy elements, mechanism of nuclear fission, or
search for the new standard model [1]; this knowledge is
also crucial for societal applications [2]. In all those cases,
reliable theoretical estimates of nuclear masses, low-lying
excitations, electromagnetic strength, and nuclear reaction
rates form essential inputs when direct experimental
information is not available.
For tackling complex nuclei theoretically, nuclear den-

sity functional theory (DFT) is the microscopic tool of
choice [3]. In recent years, largely because of algorithmic
developments and high-performance computing [4], DFT
has taken great strides as a predictive theory that describes
the properties of nuclei across the nuclear landscape [5–7].
No consensus exists, however, on the form of the nuclear
effective interaction or energy density functional (EDF),
resulting in large systematic uncertainties. Moreover,
nuclear EDFs are characterized by coupling constants that
must be adjusted to experiment [3,8–10]. The systematic
calculation of uncertainties related to the determination of

model parameters, as well as the propagation of these
uncertainties in model prediction, has thus become a
necessity [9,11–15] (see also Ref. [16]). Furthermore, as
we enter the era of experiments with exotic nuclei at
extremes of isospin, theory will play an increasingly
important role in identifying scientific priorities of planned
experimental campaigns. Conversely, as experiments
extend current knowledge by providing information about
the uncharted regions of the nuclear landscape, new
methodologies become critical for evaluating the impact
of these measurements on theory.
From the viewpoint of statistics, determining the param-

eters of a model given a set of experimental data mea-
surements is an inverse problem [17]. Bayesian inference
methods [18] are one of the most popular and powerful
statistical approaches to inverse problems, with diverse
applications in physics [19,20] (for recent nuclear physics
applications, see, e.g., Refs. [21–27]). In the Bayesian
setting, model parameters are treated as random variables,
and their uncertainty is characterized by their joint prob-
ability distribution. Various techniques, often based on
Monte Carlo simulations, have been developed to
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reconstruct this probability distribution from model
prediction of experimental data.
Objectives.—In this work, we present the advanced

application of Bayesian inference to global nuclear proper-
ties using nuclear DFT. In particular, we use the Bayesian
framework to quantify and propagate DFT statistical model
uncertainties and to assess the information content of new
data with respect to model developments. To this end, we
study the impact of the recently reported mass measure-
ments from the Canadian Penning Trap (CPT) mass
spectrometer at Argonne National Laboratory [28–30] on
the Bayesian posterior probability distribution as well as
the direct determination of EDF parameters. The CPT data
set is unique in that it probes neutron-rich nuclei around
132Sn; hence, it can help improve our knowledge of
isovector EDF properties and reduce extrapolation uncer-
tainties into the region of the astrophysical r process. From
the resulting posterior distribution, we assess model uncer-
tainties on observables, including the position of the two-
neutron dripline and fission barrier heights of actinide
nuclei.
Method.—Our theoretical framework is nuclear density

functional theory with Skyrme EDFs. Pairing is modeled
with a density-dependent pairing force and treated at
the Hartree-Fock-Bogoliubov (HFB) level by using an
approximate particle number projection with the Lipkin-
Nogami method. We choose the UNEDF1 parametrization of
the Skyrme functional as our reference model [31]. This
EDF is characterized by twelve parameters that were
optimized on a set of binding energies for spherical and
deformed nuclei, charge radii, odd-even mass differences,
and excitation energies of selected fission isomers (see
Refs. [31–33] for details of the model and the UNEDF EDF
family).
The quality of the functional is measured by a composite

χ2 function,

χ2ðxÞ ¼ 1

nd − nx

XnT

t¼1

Xnt

j¼1

�
ytjðxÞ − dtj

σt

�
2

; ð1Þ

where x denotes the set of model parameters, nx ¼ 12 is the
number of model parameters, nT the number of different
data types used in the fit (nT ¼ 4 in our case), nt is the
number of data points used for each data type, nd ¼

P
tnt

is the total number of data points, and dtj and ytjðxÞ are the
experimental value and corresponding model prediction,
respectively, for the jth data point of type t. For the UNEDF1

functional, where nd ¼ 115, computing the χ2 requires
about 5 min of CPU time with over 800 cores in a
multithreaded implementation of the DFT solver HFBTHO

[34]. Monte Carlo simulations used to construct the
posterior distribution may typically involve tens of
thousands of such χ2 evaluations; even with current
supercomputers, this cost is too high. We thus replace
the DFT model ytjðxÞ with a Gaussian process (GP)

response surface, allowing Monte Carlo based Bayesian
computation.
The GP response surface is estimated within the encom-

passing Bayesian formulation [35] by using an ensemble of
“training” DFT computations for each of the nd experi-
mental nuclei used in (1). We constructed our training
ensemble with 200 DFT computations, each with a ran-
domly sampled set of nx Skyrme parameters. The 200 × nx
Skyrme parameters were distributed over an nx-dimensional
hyper rectangle centered on the UNEDF1 values following the
algorithm given in [36]. For each parameter, widths are
determined according to the standard deviations reported in
Ref. [31], which were obtained through a covariance
analysis that assumed a linear approximation. Thus the
parameter ensemble is distributed according to the prior
distribution for the Skyrme parameters—uniform over this
nx-d hyper rectangle. The GP is controlled by a scaling
parameter, as well as correlation parameters regulating the
smoothness of the response surface in each of the nx
parameter directions.
From the GP response surface we calculate the posterior

distribution, which provides the probability that a given
model parameter set will reproduce the known experimen-
tal data. The full posterior density includes a likelihood
term for the experimental data based on Eq. (1) and
the ensemble of training DFT computations for the GP,
the uniform prior for the model parameters x, and priors
for the parameters that control the GP-based response
surface; see Ref. [37] for a detailed description of the
posterior density. We construct dependent samples from
this distribution using Markov chain Monte Carlo calcu-
lations as detailed in [35], from which summaries such as
90% probability intervals and posterior means can be
constructed.
Results.—Through Bayesian model calibration, we first

obtained the posterior probability distribution for the
UNEDF1 parameter set, which provides a sense of how
the set of fit observables of UNEDF1 constrains the param-
eters. In Fig. 1, we show the univariate and bivariate
marginal estimates of the posterior distribution. The blue-
outlined regions give the 95% posterior probability region
for the original UNEDF1 parameters. We notice that the
Bayesian approach is in agreement with estimates of
uncertainties based on covariance analysis reported in
Ref. [31]. In particular, most distributions are centered
on the UNEDF1 values, and the standard deviations extracted
from the distribution are consistent with the 95% proba-
bility intervals.
In a second step, we used our Bayesian formulation to

evaluate the information content of the new mass mea-
surements [28–30]. To this end, we modified the χ2 of
Eq. (1) to include 17 new masses of neutron-rich even-even
nuclei measured at the CPT; the experimental values are
listed in the Supplemental Material [38]. The GP response
surface was again produced by using an augmented
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ensemble of 200ðnd þ 17Þ DFT model evaluations. The
green-outlined regions in Fig. 1 represent the same 95%
posterior probability regions obtained with the inclusion of
the Argonne mass measurements. With the exception of a
few ill-constrained parameters (e.g., nuclear incompress-
ibility and isovector surface coupling constant), the shift in
the posterior is small for each parameter. This suggests a
weak impact of the additional data on our model.
For comparison, we performed a direct reoptimization,

independent of the GP response surface, of the UNEDF1

functional that includes the new CPT masses [39]. We refer
to the reoptimized EDF parameter set as UNEDF1CPT; see
Supplemental Material for parameter values [38]. The two
parametrizations are similar. The largest relative difference,
weighted by the standard deviations reported in Ref. [31], is
0.6σ for the isovector surface coupling constant CρΔρ

1 and
surface symmetry energy. These quantities have been
difficult to constrain with the data set used in the UNEDF

protocol. Of interest, then, is the fact that the UNEDF1CPT
value (CρΔρ

1 ¼ −114.2915) is close to that of UNEDF2

(CρΔρ
1 ¼ −113.164), which was also optimized to effective

single-particle energies [33], known to be sensitive probes
of surface properties. Since the new data set including CPT
masses is more skewed toward neutron-rich nuclei, it may
supply additional information about the shell structure

above doubly magic 132Sn through a better determination
of isovector coupling constants.
Table I displays the root-mean-square deviation between

calculated and measured values for each type of data
included in the optimization. We note that the inclusion
of the CPT mass measurements shifts the optimization
priority, so that the new masses and deformed masses are
reproduced more accurately, while predictions for fission
isomers and spherical masses deteriorate slightly. The
results in Table I are indicative of a small, additional
constraint on the isovector coupling constants in UNEDF1CPT.
Equipped with the posterior distribution for the EDF

parameters, we now turn to the propagation of statistical
uncertainties for model predictions. Implicit in the χ2 of
Eq. (1) is the statistical model for a new mass measurement
dtj ¼ ytjðxÞ þ εtj, with the “model misfit” error term εtj
assumed to be independent, following a normal distribution
Nð0; s2t Þ. We take the posterior distribution for the EDF
parameters obtained by conditioning only on the measure-
ments used in the fit of UNEDF1 and propagate the
distribution through the augmented GP-based emulator,

TABLE I. Root-mean-square deviations for each of the types of
data included in the UNEDF optimization. Masses and energies are
in MeV, radii in fm.

Class UNEDF1 UNEDF1CPT

Masses (def) 0.721 0.578
Masses (sph) 1.461 1.545
Radii 0.022 0.022
Odd-even staggering (n) 0.023 0.024
Odd-even staggering (p) 0.079 0.081
Fission isomer energies 0.190 0.316
Masses (CPT) 1.064 0.479

FIG. 1 (color online). Univariate and bivariate marginal esti-
mates of the posterior distribution for the 12-dimensional DFT
parameter vector of the UNEDF1 parametrization. The blue lines
enclose an estimated 95% region for the posterior distribution
found when only the original UNEDF1 data are accounted for; the
green-outlined regions represent the same region for the posterior
distribution found when the new CPT mass measurements
are included. The ranges of parameter variations are
0.155 ≤ ρc ≤ 0.165 ðfm−3Þ; −16.0 ≤ ENM=A ≤ −15.5 ðMeVÞ;
200 ≤ KNM ≤ 240 ðMeVÞ; 28 ≤ aNMsym ≤ 30ðMeVÞ; 20 ≤ LNM

sym ≤
60ðMeVÞ; 0.8 ≤ 1=M�

s ≤ 1.2; −60 ≤ CρΔρ
0 ≤ −40 ðMeV fm5Þ;

−200≤CρΔρ
1 ≤−90ðMeVfm5Þ; −200 ≤ Vn

0 ≤ −150 ðMeV fm3Þ;
−220≤Vp

0 ≤−180ðMeVfm3Þ; −80 ≤ Cρ∇J
0 ≤ −60 ðMeV fm5Þ;

and −80 ≤ Cρ∇J
1 ≤ 0 ðMeV fm5Þ.

FIG. 2 (color online). Estimated theoretical error bars for the
masses of the even-even nuclei measured in Refs. [28–30], using
the posterior distribution for UNEDF1. Thin green bars show the
results of training DFT calculations. Dark blue bands represent
the 90% confidence bands due to uncertainty in the EDF
parameters; larger, light blue bands also account for model error;
black bars show mass residuals.
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producing prediction intervals for the new CPT mass
measurements. These estimates are genuine holdout pre-
dictions since the new mass data were not used in
determining the posterior distribution. Figure 2 shows
90% prediction intervals (centered on the mean mass value
of UNEDF1) for the new CPT masses. The dark blue band is
the 90% interval for the uncertainty due to the EDF model
parameters x alone; the light blue band also includes
additional uncertainty due the terms εtj. The standard
deviations st were estimated from the difference between
the posterior mean estimate and the available mass mea-
surements. Separate estimates were made for mass pre-
dictions of spherical and deformed nuclei. These estimated
misfit-error standard deviations st were assumed to be
appropriate for the new CPT mass predictions, producing
this additional uncertainty. We observe that the experimen-
tally measured values (black bars in Fig. 2) are generally

within the 90% prediction interval. The estimated uncer-
tainty for the calculated masses is approximately �2 MeV,
and slightly larger for the four spherical nuclei (the first
four nuclei in the figure). This uncertainty is relatively large
and in excellent agreement with the rms deviation for
masses of even-even nuclei across the entire nuclear land-
scape, which is 1.9 MeV for UNEDF1.
We now evaluate how the calculated model uncertainties

impact predictions for important physical observables. We
first look at the position of the two-neutron dripline, which
is especially important for our understanding of nucleo-
synthesis in the r process [40]. For a given element
characterized by its proton number Z, the two-neutron
dripline is defined as the point where the two-neutron
separation energy becomes negative. We have performed
an ensemble of calculations of nuclear binding energies for
all even-even neutron-rich elements with 20 ≤ Z ≤ 100

over the same random sample of EDF parameter inputs,
allowing yet another GP-based emulator to be constructed
for these binding energies.
Once the emulator is constructed, we propagate the

posterior distribution of the model parameters (condition-
ing on either the UNEDF1 or UNEDF1CPT data sets), producing
uncertainty in the estimated dripline. With this Monte Carlo
sample, we can estimate the posterior mode and 90%
interval for the dripline for each value of Z. We explored the
axial quadrupole potential energy surface of each nucleus
to allow for deformed solutions. The results are presented
in Fig. 3. We observe that the inclusion of 17 new masses of
neutron-rich nuclei in the optimization protocol did not
impact the position of the dripline, since results with
UNEDF1 and UNEDF1CPT are practically indistinguishable.
The predicted dripline is consistent with the results of large-
scale DFT surveys [6,7]. Apart from the few closed-shell,
waiting-point nuclei, the uncertainty on the position of the
dripline is on the order of 15 to 20 nucleons. This is
comparable to statistical and systematic uncertainties
obtained by comparing predictions made with different
Skyrme functionals [6].
Another important application area of nuclear DFT is

fission theory. In Fig. 4, we show the potential energy curve
of 240Pu. This nucleus is representative of the actinide
region and is often used as a theoretical benchmark. Again,
the results of UNEDF1 and UNEDF1CPT are close. The large
theoretical uncertainty in the predicted static fission barrier
is worth noting; similar results were obtained in Ref. [41] in
the context of fission properties for r-process nuclei. Since
a 1 MeV shift in the fission barrier translates into many
orders of magnitude difference in the spontaneous fission
half-life, such results highlight the urgent need for better
constraining the deformation properties of current EDFs.
Conclusions.—We have presented a comprehensive

application of Bayesian inference techniques to the calcu-
lation and propagation of theoretical statistical uncertainties
in nuclear density functional theory. By using the recent,

FIG. 3 (color online). Comparison between the two-neutron
dripline predictions made with UNEDF1 (solid line) and those
made with UNEDF1CPT (dashed line). The 90% probability spread
about the UNEDF1 predictions is shown in gray.
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FIG. 4 (color online). Comparison between the fission barrier
predictions for 240Pu made with UNEDF1 (solid line) and those
made with UNEDF1CPT (dashed line), together with the 90%
confidence interval (shaded gray area). The potential energy
surface was obtained by following the lowest-energy static fission
pathway in a four-dimensional collective space of axial and
triaxial quadrupole, axial octupole, and axial hexadecapole mass
moments.
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unique data set of mass measurements from the CPT
at Argonne National Laboratory, we showcase how the
statistical tools of uncertainty quantification and high-
performance computing can be used to assess the infor-
mation content of new data with respect to current models.
Such analyses will become increasingly relevant for
enhancing the feedback in the “observation-theory-
prediction-experiment”—cycle of the scientific method at
the eve of next-generation radioactive ion beam facilities
and exascale computing.
In the particular case studied in this work, we found that

the impact of the new neutron-rich nuclei mass data on our
DFT model is minor. The coupling constants of the earlier
functional UNEDF1 and of the new functional UNEDF1CPT,
informed by the new data, are fairly close; hence, their
predictions for the two-neutron dripline and fission barrier
in 240Pu are practically identical. Although the major
theoretical statistical uncertainty in developments of the
nuclear EDF comes from the poorly constrained isovector
terms and the new data on neutron-rich nuclei are generally
expected to reduce this uncertainty, the lack of a significant
constraint from the new masses suggests that both the
amount of new neutron-rich isotope data and the range of
neutron excess probed are not sufficiently large to impact
our model appreciably. Moreover, because of their poor
precision with respect to the existing data (see Table I),
even the current, best-calibrated EDFs are not sensitive and
flexible enough to fully take advantage of the new
experimental information.
By propagating theoretical errors, we found large model

uncertainties in the predictions of the two-neutron dripline
and the fission barrier in 240Pu. In this respect, we concur
with the conclusions of Ref. [30] that existing mass models
are insufficient for accurate r-process simulations. Clearly,
accurate measurements for nuclei with even larger neutron
excess, closer to the r-process path, are still needed in order
to better inform theory.
We note that the uncertainties discussed in this work are

estimated statistically, reflecting parameter uncertainty and
model misfit. The misfit error is most likely due to our lack
of knowledge of the form of the nuclear EDF itself, and
additional measurements will never reduce this source of
uncertainty. Adding physics that is missing in the current
implementations of nuclear DFT is a major challenge for
the field. A distinct and complementary challenge is to
develop tools that deliver uncertainty quantification for
theoretical studies as well as for the assessment of new
experimental data. The present work represents a step in
this direction.
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