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We compute the d̄ − ū asymmetry in the proton in chiral effective theory, including both nucleon and Δ
degrees of freedom, within the relativistic and heavy baryon frameworks. In addition to the distribution
at x > 0, we compute the corrections to the asymmetry from zero momentum contributions from pion
rainbow and bubble diagrams at x ¼ 0, which have not been accounted for in previous analyses. We find
that the empirical x dependence of d̄ − ū as well as the integrated asymmetry can be well reproduced in
terms of a transverse momentum cutoff parameter.
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The observation of the d̄ − ū flavor asymmetry in the
light quark sea of the proton [1–4] has been one of the
seminal results in hadronic physics over the past two
decades, leading to a major reevaluation of our under-
standing of the quark structure of the nucleon. In particular,
the measurement revealed the importance of 5-quark Fock
state components of the nucleon’s wave function, and the
crucial role played by chiral symmetry breaking. This
asymmetry had been anticipated by Thomas [5] a decade
earlier, and has subsequently been studied using various
nonperturbative models [6–10]. However, despite some
successes in reproducing the general features of the data, it
has proved very difficult to obtain direct connection
between the models and QCD.
An important development in establishing a formal link

between models of d̄ − ū and QCD came with the reali-
zation that the moments of parton distribution functions
(PDFs) could be formally expanded in chiral effective field
theory in terms of power series in the pion mass squared,
m2

π . The leading nonanalytic (LNA) contributions were
found to depend on the (model-independent) long range
structure of the pion cloud, with a characteristic m2

π logm2
π

dependence [11,12]. This idea was later applied to the
chiral extrapolation of lattice QCD moments of the u − d
distribution to reconcile the lattice data at large m2

π with
experiment [13].
Initial calculations of pion loop effects were performed

in the context of the “Sullivan” process [14], using
pseudoscalar pion-nucleon coupling, which involves only
the pion “rainbow” diagram. Analysis within the chiral
effective theory for the pseudovector coupling reveals
differences in the off-shell behavior of the loops [15], as
well as the presence of additional pion bubble terms [16,17]
at x ¼ 0 [18]. The relationship between the pseudoscalar
and pseudovector theories was recently discussed in
Refs. [18,19].

While the structure of the pion loops constrains the
behavior of the PDF moments at small m2

π , the total
moments depend also on the short-distance contributions,
parametrized by coefficients of analytic terms in the chiral
expansion. In principle, these can be fitted to data, and the
PDFs reconstructed from the moments assuming a func-
tional form for the dependence on the parton momentum
fraction x [20]. Recently, however, a method for computing
the PDFs directly in x space has been developed, by
matching nonlocal operators within heavy baryon (HB)
chiral effective theory [21]. The results allow the total
distributions to be computed in the form of convolutions
of bare PDFs in the pion with pion light-cone momentum
distributions associated with pion rainbow, bubble, and
Kroll-Ruderman terms [18].
In this Letter, we apply this formalism for the first time to

analyze the d̄ − ū distribution in the proton within chiral
effective theory. We consider both the covariant and non-
relativistic HB formulations of the low-energy chiral
theory, including both nucleon N and Δ contributions to
loop integrals. While the on-shell components of the N and
Δ rainbow diagrams give rise to distributions that closely
resemble earlier model calculations, we find in addition
unique signatures of off-shell components and bubble
diagrams that are nonzero at x ¼ 0. Although difficult to
access directly through experiment, these terms modify
the value of d̄ − ū integrated over all x, which is the
benchmark for the magnitude of the flavor symmetry
violation. To illustrate the phenomenological application
of our approach, we also compute the shape of the d̄ − ū
distribution using a transverse momentum cutoff to regu-
larize the ultraviolet contributions from the pion loops.
The pion light-cone distributions can be calculated in

the effective chiral theory from the diagrams shown in
Fig. 1 [18,19,21]. Other contributions, such as the rainbow
diagrams with coupling to the baryon, pion tadpoles, or

PRL 114, 122001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 MARCH 2015

0031-9007=15=114(12)=122001(5) 122001-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.122001
http://dx.doi.org/10.1103/PhysRevLett.114.122001
http://dx.doi.org/10.1103/PhysRevLett.114.122001
http://dx.doi.org/10.1103/PhysRevLett.114.122001


Kroll-Ruderman diagrams, also give nonzero corrections to
PDFs, but do not contribute to d̄ − ū if one assumes a flavor
symmetric sea in the bare proton.
Starting from the lowest-order chiral Lagrangian [22,23],

these have previously been derived for the diagrams in
Figs. 1(a) and 1(c) involving nucleons and pions [18,21].
Including also contributions from the Δ intermediate states
in Fig. 1(b), the d̄ − ū difference in the proton can be
written as [12]

d̄ − ū ¼ ðfπþn þ fπþΔ0 − fπ−Δþþ þ fπðbubÞÞ ⊗ q̄πv; ð1Þ

where generally the convolution is defined as f ⊗ q ¼R
1
0 dy

R
1
0 dzδðx − yzÞfðyÞqðzÞ, with y ¼ kþ=pþ the light-

cone fraction of the proton’s momentum (p) carried by the
pion (k). The pion light-cone momentum distributions
fπN and fπΔ correspond to the pion rainbow diagrams in
Figs. 1(a) and 1(b), while fπðbubÞ represents the pion bubble
diagram in Fig. 1(c). The contributions from individual
charge states in Eq. (1) arise from the fluctuations
p → πþn, πþΔ0 or π−Δþþ. The convolution in Eq. (1)
is obtained from the crossing symmetry properties of
the light-cone distributions [12], fð−yÞ ¼ fðyÞ, and the
valence pion PDF, q̄πðxÞ ¼ −qπð−xÞ, for which we have
assumed charge symmetry, q̄πv ≡ d̄π

þ − dπ
þ ¼ ūπ

− − uπ
−
.

Following [18], the fπþn distribution can be written as

fπþnðyÞ ¼ 2
h
fðonÞN ðyÞ þ fðδÞN ðyÞ

i
; ð2Þ

where fðonÞN and fðδÞN are the on-shell and δ-function
contributions from the pion rainbow diagram, respectively.
The on-shell nucleon term for y > 0 is [5,7,8,18]

fðonÞN ðyÞ ¼ g2AM
2

ð4πfπÞ2
Z

dk2⊥
yðk2⊥ þ y2M2Þ
ð1 − yÞ2D2

πN
; ð3Þ

where M is the nucleon mass, gA ¼ 1.267 is the axial
charge, fπ ¼ 93 MeV is the pion decay constant, and
DπN ¼ −½k2⊥ þ y2M2 þ ð1 − yÞm2

π�=ð1 − yÞ is the pion
virtuality (k2 −m2

π) for an on-shell nucleon intermediate
state. In contrast, the off-shell contribution arises from
pions with zero light-cone momentum,

fðδÞN ðyÞ ¼ g2A
4ð4πfπÞ2

Z
dk2⊥ log

Ωπ

μ2
δðyÞ; ð4Þ

where Ωπ ¼ k2⊥ þm2
π , and μ is an ultraviolet cutoff on the

k− integration. Since fðδÞ is nonzero only at y ¼ 0, it
contributes to d̄ − ū only at x ¼ 0. While it cannot be
measured directly, it nevertheless affects the determination
of D −U ≡ R

1
0 dxðd̄ − ūÞ (as in the Gottfried sum rule

[24]) when extrapolating to x ¼ 0.
The πΔ contribution can be computed from the effective

πNΔ interaction ψ̄μ
Δ½gμν − ðZ þ 1=2Þγμγν�∂νϕπψN , where

Z parametrizes the off-shell behavior of the spin-3=2 field
ψμ
Δ. The resulting πΔ distribution function can be written as

a sum of three terms,

fπþΔ0ðyÞ ¼ fðonÞΔ ðyÞ þ fðend pointÞ
Δ ðyÞ þ fðδÞΔ ðyÞ: ð5Þ

For Z ¼ −1=2, the on-shell (Δ-pole) contribution at y > 0
is given by

fðonÞΔ ðyÞ

¼ CΔ

Z
dk2⊥

yðM2 −m2
πÞ

1 − y

×

�ðM2 −m2
πÞðΔ2 −m2

πÞ
D2

πΔ
−
3ðΔ2 −m2

πÞ þ 4MMΔ

DπΔ

�
;

ð6Þ

whereDπΔ¼−½k2⊥−yð1−yÞM2þyM2
Δþð1−yÞm2

π�=ð1−yÞ
is the pion virtuality for an on-shell Δ intermediate state,
and we define Δ≡MΔ −M and M ≡MΔ þM. The
coefficient CΔ ¼ g2πNΔ=½ð4πÞ218M2

Δ�, and using SU(6)
symmetry and the Gell-Mann–Oakes–Renner relation
the πNΔ coupling constant is gπNΔ ¼ ð3 ffiffiffi

2
p

=5ÞgA=fπ ≈
11.8 GeV−1 [25].
In addition, the pole contribution involves an end-point

singularity, which gives a δ-function at y ¼ 1,

fðend pointÞ
Δ ðyÞ

¼ CΔ

Z
dk2⊥δð1 − yÞ

×

�
½ΩΔ − 2ðΔ2 −m2

πÞ − 6MMΔ� log
ΩΔ

μ2
−ΩΔ

�
;

ð7Þ

where ΩΔ ¼ k2⊥ þM2
Δ. The off-shell components of the Δ

propagator introduce a δ-function term at y ¼ 0,

(a) (b) (c)

FIG. 1. Contributions to the pion light-cone momentum dis-
tributions in the proton, from the pion rainbow diagram with (a) a
nucleon or (b) Δ intermediate state, and (c) from the pion bubble
diagram.
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fðδÞΔ ðyÞ ¼ CΔ

Z
dk2⊥δðyÞ

×

�
½3ðΩπ þm2

πÞ þM2� logΩπ

μ2
− 3Ωπ

�
: ð8Þ

Although this gives a nonzero PDF only at x ¼ 0, since
it contributes to the integral of d̄ − ū, it will indirectly
affect the normalization for x > 0. For the p → Δþþπ−
dissociation, the distribution function is given by
fπ−Δþþ ¼ 3fπþΔ0 . Note also that for values of the off-shell
parameter Z ≠ −1=2, the additional interaction term ∼γμγν
contributes only to the off-shell component fðδÞΔ without
modifying our LNA result.
The Δ contribution has been considered in several

previous studies, both within pion cloud models
[7,8,10,25] and in chiral effective theory in the large-Nc
limit [26]. In the phenomenological approaches, one
computes the Sullivan process with the Δ intermediate
state by taking theΔ-pole contribution, ðp− kÞ2−M2

Δ → 0,
which gives the distribution usually found in the literature
[7,8,10,11,25],

fðSulÞΔ ðyÞ ¼ CΔ

Z
dk2⊥y

×
½k2⊥ þ ðΔþ yMÞ2�½k2⊥ þ ðM − yMÞ2�2

ð1 − yÞ4D2
πΔ

: ð9Þ

Note that the power of k⊥ in the numerator here is k6⊥, while
in the on-shell contribution in Eq. (6) it is k2⊥. This
difference arises because the Sullivan process neglects
the end-point contributions, which give rise to the
δð1 − yÞ term in Eq. (7), and also cancel the Oðk4⊥Þ and
Oðk6⊥Þ terms. The correct calculation of the Δ-pole con-

tribution therefore yields fðonÞΔ þ fðend pointÞ
Δ . The off-shell

contribution proportional to δðyÞ is not included in the
Sullivan approach, for either the Δ or nucleon intermediate
states. For the latter, the Sullivan method yields only the

on-shell component [18,19], fðSulÞN ðyÞ ¼ fðonÞN ðyÞ.
Finally, for the pion bubble diagram in Fig. 1(c), the

distribution fπðbubÞ has a form similar to the δ-function part
of fπþn [18],

fπðbubÞðyÞ ¼ −
2

g2A
fðδÞN ðyÞ: ð10Þ

This term originates with the Weinberg-Tomozawa part of
the chiral Lagrangian, and is independent of gA.
Because the leading chiral behavior of matrix elements is

not affected by baryon masses, for simplicity most earlier
studies of chiral corrections to PDF moments [12,16,17],
as well as generalized parton distributions [27], were
performed in the HB limit. It is instructive therefore to
compare the results for the x dependence of PDFs in the HB
and relativistic approaches [19,28].

In the HB limit (mπ ≪ M, y ≪ 1), the nonrelativistic
analog of the on-shell function in Eq. (3) is obtained by
the replacement ð1−yÞDπN → eDπN ¼−ðk2⊥þy2M2þm2

πÞ.
The δ-function and bubble contributions fðδÞN and fπðbubÞ,
however, remain unchanged.
For the Δ intermediate state, in the HB limit both the N

and Δ masses are large, M → ∞, while the difference is
kept finite, Δ=M → 0. In this case the on-shell function
reduces to

~fðonÞΔ ðyÞ ¼ 8g2πNΔM
2

9ð4πÞ2
Z

dk2⊥
yðΔ2 −m2

π − eDπΔÞ
eD2
πΔ

; ð11Þ

where the nonrelativistic analog of DπΔ in Eq. (6) is
eDπΔ ¼ −ðk2⊥ þ y2M2 þ 2yMΔþm2

πÞ. Similarly, in the
HB limit the δ-function contribution in Eq. (8) becomes

~fðδÞΔ ðyÞ ¼ 2g2πNΔ
9ð4πÞ2

Z
dk2⊥δðyÞ log

Ωπ

μ2
: ð12Þ

Because in this limit one has y ≪ 1, there is no analogous
nonrelativistic end-point contribution to that in Eq. (7).
The consistency of the above results with the chiral

symmetry of QCD can be verified by examining the LNA
behavior of D −U. Since the valence pion PDF q̄πv is
normalized to unity, D −U is given entirely by the
moments of the pion distribution functions in Eq. (1).
Expanding these inmπ , the LNA behavior ofD −U is then
given by

ðD −UÞLNA ¼ 3g2A þ 1

2ð4πfπÞ2
m2

π logm2
π −

g2πNΔ
12π2

J1; ð13Þ

where J1 ¼ ðm2
π − 2Δ2Þ logm2

π þ 2Δr log½ðΔ− rÞ=ðΔþ rÞ�,
with r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2

π

p
. The nucleon intermediate state con-

tribution in Eq. (13) coincides with the result obtained in
Ref. [12], and the expression for J1 agrees with that in

Ref. [16]. Note that the end-point component fðend pointÞ
Δ

does not contain any nonanalytic structure in m2
π , and

therefore does not contribute to the LNA behavior.
Since the chiral properties of the pion distributions are
independent of the short-distance part of the pion-nucleon
interaction, the LNA contribution computed in the HB
limit is identical to that in Eq. (13). In the Δ → 0 limit,
the coefficient of the LNA m2

π logm2
π term is

½ð27=50Þg2A þ 1=2�=ð4πfπÞ2. Compared to the coefficient
of the LNA term in Eq. (13) from the nucleon alone, the Δ
intermediate state leads to a reduction in the LNA coef-
ficient by more than 50%.
On the other hand, in the Sullivan approach, which only

accounts for the on-shell components, the LNA behavior in
the Δ → 0 limit is [11]
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ðD −UÞðSulÞLNA ¼
�

2g2A
ð4πfπÞ2

−
g2πNΔ
9π2

�
m2

π logm2
π: ð14Þ

For the nucleon rainbow contribution in Fig. 1(a), the on-
shell (Sullivan) approximation is therefore a factor of 4=3
larger than the exact result in Eq. (13). Interestingly, the
contribution from the Δ rainbow diagram in Fig. 1(b) in the
Sullivan approach is also 4=3 larger than the full expression
in the Δ → 0 limit with the δ-function components. Using
SU(6) couplings, the coefficient of the LNA term in the
Sullivan approximation is ð18=25Þg2A=ð4πfπÞ2.
In Fig. 2 we show the individual contributions to D −U

from the nucleon, Δ and bubble diagrams as a function of μ
and the k⊥ cutoff parameter Λ. For μ ranging between 0.1
and 1 GeV, Λ is fixed by matching the calculation to the
value of the d̄ − ū integral extracted from the E866 Drell-
Yan data over the measured x range,

R
0.35
0.015 dxðd̄ − ūÞ ¼

0.0803ð11Þ [4]. The resulting variation in Λ is relatively
mild, ranging from Λ ≈ 0.18 to 0.23 GeV, and the total
D − U is similar to the empirical results from the Drell-Yan
[4] and deep-inelastic scattering [1,2] data. One should
caution, however, that the experimental values are obtained
by extrapolating the data to x ¼ 0 and x ¼ 1 under the
assumption that there is no contribution at x ¼ 0. The

δ-function contributions fðδÞN , fðδÞΔ , and fπðbubÞ will give
nonzero corrections to the extrapolated moment.
Numerically, the most important contribution is from the

nucleon on-shell distribution fðonÞN , but this is canceled to

some extent by the negative fðδÞN distribution. The on-shell

Δ contribution fðonÞΔ is negative and ≈1=2 the magnitude of
the on-shell N component. On the other hand, the Δ

contributions at y ¼ 0 and y ¼ 1 are both positive, with
the sum of the two largely canceling the negative on-shellΔ
term. The net result is a significantly smaller Δ component
than that found in many previous analyses. The pion bubble
contribution is positive for most values of μ and slightly
enhances the on-shell nucleon term. From Eq. (10) one

expects the fðδÞN contribution to cancel strongly with fπðbubÞ,

and partially with the positive fðδÞΔ . Thus we see strong
cancellations between all the singular x ¼ 0 pieces, leaving
the total pionic contributions to D −U determined largely
by the nucleon on-shell part [5]. This explains for the first
time the relative success of the phenomenological descrip-
tions of the data through the Sullivan process in terms
of on-shell nucleon contribution alone. In practice, the
δ-function pieces at x ¼ 0 can contribute up to ≈16%
(for μ ¼ 1 GeV) of the d̄ − ū difference integrated over
the measured region of x, which is a relatively small
contribution to the Gottfried sum violation.
For the nonrelativistic calculation, with the same values

of the cutoff parameters, there is a small reduction in the N
contribution, reflecting theDπN → eDπN modification in the
on-shell component. On the other hand, the absence of
the end-point term in the HB calculation means that the
nonrelativistic on-shell contribution is significantly more
negative, and cancels much more of the total nucleon
contribution.
Within the framework of the present calculation, we

can also estimate the x dependence of d̄ − ū from the
convolution in Eq. (1), with the light-cone distributions
computed in terms of the same parameters as in Fig. 2. For
the valence PDFs in the pion we use the global para-
metrization from Ref. [30]. The resulting d̄ − ū asymmetry
is illustrated in Fig. 3 at a scale Q2 ¼ 54 GeV2, with the
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FIG. 2 (color online). Contributions to D −U from the dia-
grams in Fig. 1 as a function of the cutoff parameters μ and Λ. The
nucleon on-shell and δ-function, and Δ on-shell, end-point, and
δ-function contributions are shown individually, together with
the pion bubble contribution and the total. The calculations are
compared with data from the NMC [1], HERMES [2], and E866
[4] experiments, and from a recent lattice QCD calculation [29].
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nucleon and Δ contributions at x > 0 computed for μ ¼
0.3 GeV and Λ ¼ 0.2 GeV (the δ-function contributions

fðδÞN , fðδÞΔ , and fπðbubÞ exist only at x ¼ 0). The asymmetry is
dominated by the nucleon on-shell component, with the Δ
on-shell contribution providing some cancellation at small
x, but becoming negligible for x≳ 0.1. The shaded band
illustrates the uncertainty in the calculation, with the
envelope representing the extremal values of the cutoffs
μ ¼ 0.1 and 1 GeV, and the experimental uncertainty on the
E866 data [4]. Without attempting to fine-tune the param-
eters, the overall agreement between the calculation and
experiment is very good. As with all previous pion loop
calculations, the apparent trend of the E866 data towards
negative d̄ − ū values for x≳ 0.3 is not reproduced in this
analysis. The new SeaQuest experiment [31] at Fermilab is
expected to provide new information on the shape of d̄ − ū
for x≲ 0.45.
The analysis described here can be applied to other

nonperturbative quantities in the proton, such as the flavor
asymmetry of the polarized sea, Δū − Δd̄, or the strange-
antistrange asymmetry s − s̄ using an SU(3) generalization
of the effective chiral theory. Beyond this, the methodology
can be further extended to study the systematics of chiral
loop corrections to partonic observables such as transverse
momentum dependent distributions and generalized parton
distributions.
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