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In theories with N ¼ 2 supersymmetry on R3;1, supersymmetric bound states can decay across walls of
marginal stability in the space of Coulomb branch parameters, leading to discontinuities in the BPS indices
Ωðγ; uÞ. We consider a supersymmetric index I which receives contributions from 1=2-BPS states,
generalizing the familiar Witten index Trð−1ÞFe−βH . We expect I to be smooth away from loci where
massless particles appear, thanks to contributions from the continuum of multiparticle states. Taking
inspiration from a similar phenomenon in the hypermultiplet moduli space of N ¼ 2 string vacua, we
conjecture a formula expressing I in terms of the BPS indicesΩðγ; uÞ, which is continuous across the walls
and exhibits the expected contributions from single particle states at large β. This gives a universal
prediction for the contributions of multiparticle states to the index I . This index is naturally a function on
the moduli space after reduction on a circle, closely related to the canonical hyperkähler metric and
hyperholomorphic connection on this space.
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It has been clear since the work of Seiberg andWitten [1]
that extended supersymmetry gives enough control over
four-dimensional quantum field theories to produce exact
results on the dynamics of the theories, even when these
theories are strongly interacting. Remarkably, such results
are deeply related to some of the most interesting questions
in the mathematics of algebraic geometry and differential
geometry. As a significant example, the moduli space of a
four-dimensional theory with N ¼ 2 supersymmetry on a
circle is a hyperkähler manifold (a special class of manifolds
satisfying Einstein’s equations), whose metric encodes
both instanton corrections to gauge couplings and the
spectrumofBogomol’nyi-Prasad-Sommerfield (BPS) states
in the four-dimensional theory [2]. In this Letter, we
reinforce this connection, and construct a canonical function
on the aforementioned moduli space, which, on the one
hand, generates a solution to the self-dual Yang-Mills
equations on this manifold, and, on the other hand, purport-
edly encodes interactions of BPS states in four dimensions.
BPS indices and the Witten index.—In four-dimensional

field theories on R3;1 with N ¼ 2 supersymmetry, the
spectrum of BPS states in general strongly depends on the
value of the Coulomb branch parameters. Part of this
dependence can be removed by considering the BPS index

Ωðγ; uÞ ¼ −
1

2
TrH1ðγ;uÞð−1Þ2J3ð2J3Þ2; ð1Þ

where H1ðγ; uÞ is the Hilbert space of one-particle states
with electromagnetic charge γ ∈ Γ in the Coulomb vacuum
u, J3 is a component of the rotation group along a fixed
axis, and ð−1Þ2J3 is the fermionic parity by virtue of the
spin statistics theorem. The BPS index Ωðγ; uÞ, being
sensitive only to short multiplets saturating the BPS bound
[3], is a locally constant, integer valued function of u, but it
is discontinuous across certain walls in moduli space,
where some of the BPS bound states with charge γ decay
into multiparticle BPS states [1,4]. The jump of Ωðγ; uÞ
across the walls is governed by a universal wall-crossing
formula [5], which can be derived by quantizing the
configurational degrees of freedom of multicentered BPS
states near the wall [6–8] (see, e.g., [9] for a review).
The present work addresses another apparently protected

quantity, the Witten index

Iðβ; u; CÞ ¼ −
1

2
TrHðuÞð−1Þ2J3ð2J3Þ2σe−βH−2πihγ;Ci; ð2Þ

whereHðuÞ is the full Hilbert space of the four-dimensional
theory onR3. Here,β is the inverse temperature, conjugate to
the Hamiltonian H, C are chemical potentials conjugate to
the electromagnetic charge γ, and σ is an operator on HðuÞ
acting by a sign σγ in the sector with charge γ, such that
σγσγ0 ¼ ð−1Þhγ;γ0iσγþγ0 , where hγ; γ0i is the usual Dirac-
Schwinger-Zwanziger product—this sign is crucial in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 114, 121601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 MARCH 2015

0031-9007=15=114(12)=121601(6) 121601-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.121601
http://dx.doi.org/10.1103/PhysRevLett.114.121601
http://dx.doi.org/10.1103/PhysRevLett.114.121601
http://dx.doi.org/10.1103/PhysRevLett.114.121601
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


ensuring the consistency of self-dual field theories
[10–14]. For simplicity, we restrict our work to theories
without flavor charges. The use of the canonical ensemble
with respect to the electromagnetic charges is not essential,
but facilitates the geometric interpretation of the index.
Most importantly, unlike the well-studied case of the

index on S3, the spectrum of the Hamiltonian on R3 is
gapless, due to massless gauge bosons and their super-
partners, and continuous, as it includes all multiparticle
states made out of the discrete states in⨁γ∈ΓH1ðγ; uÞ. The
contribution of the point spectrum to the index (2) is
controlled by the BPS indices Ωðγ; uÞ, and is therefore
discontinuous across walls of marginal stability.
Multiparticle states, on the other hand, can also contribute
despite the fact that they do not saturate the BPS bound, due
to a possible spectral asymmetry between bosonic and
fermionic states [15]. Our main assumption is that the
Witten index (2) is continuous across walls of marginal
stability, as a result of cancellations between discontinuities
from single and multiparticle state contributions. This
assumption is physically reasonable, since the path integral
defining (2) suffers no phase transition across the wall.
Under this assumption, we propose a formula for express-
ing (2) in terms of the BPS indices Ωðγ; uÞ.
Our assumption is further supported by analogy with the

case of framed BPS indices associated to line defects in
N ¼ 2 theories of class S. These indices are defined by a
formula almost identical to (2) [without the insertion of
ð2J3Þ2], and are known to be smooth across BPS walls [16].
The Witten index (2) can be viewed as the extension of the
framed index to the case of a trivial line defect.
Another class of examples where a Witten-type index is

known to be a smooth function of the moduli arises in
N ¼ 2 supersymmetric massive theories in 1þ 1 dimen-
sions: the BPS indices Ωab, which count single-particle
kinks interpolating between pairs ab of supersymmetric
vacua, exhibit similar wall-crossing phenomena as in 3þ 1
dimensions [17], while the Cecotti-Fendley-Intriligator-
Vafa (CFIV) index Trabð−1ÞFFe−βH is continuous across
the walls, as a result of cancellations between single-
particle and multiparticle contributions [18,19].
Yet another way to support our assumption is the general

expectation that the Witten index controls quantum cor-
rections to BPS-saturated couplings in the low-energy
effective action. In the case of four-dimensional N ¼ 2
theories, an appropriate coupling is the metric on the
moduli space of the theory reduced on a spatial circle of
radius R. In 2þ 1 dimensions, Abelian gauge fields can be
dualized into scalar fields, and the dynamics on the
Coulomb branch can be formulated as a nonlinear sigma
model. Its target space M3ðRÞ is a torus fibration over the
Coulomb branch moduli space M4 in 3þ 1 dimensions,
with the torus fiber parametrizing the holonomies C of
the electromagnetic gauge fields around the circle [20].
Supersymmetry requires the metric on M3ðRÞ to be

hyperkähler (HK). In the limit R → ∞ it is obtained from
the special Kähler metric on M4 via the so-called “rigid
c-map” procedure [21]. For finite radius, however, the
metric on M3ðRÞ receives instanton corrections of order
e−R from BPS states in 3þ 1 dimensions, whose
Euclideanized worldline winds around the circle [2,20]
(a supersymmetric version of a mechanism first envisaged
in [22]). Although corrections to the metric components
include an infinite series of multi-instanton corrections,
they are entirely controlled by the BPS indices Ωðγ; uÞ
counting single-particle states. Furthermore, it is manifest
from the twistorial construction of M3ðRÞ [2] that the
quantum corrected metric is regular across walls of mar-
ginal stability, with multi-instanton contributions on one
side of the wall replacing the one-instanton correction on
the other side (alternatively, the smoothness of the metric
on M3ðRÞ provides a physical rationale for the wall-
crossing formulas of [5]).
Since quantum corrections to the moduli space metric in

theories with 8 supercharges are generally saturated by
1=2-BPS contributions, it is natural to expect a connection
between the metric on M3ðRÞ and the Witten index
Iðβ; u; CÞ for β ¼ 2πR. The goal of this Letter is to
construct a natural function on the family of spaces
M3ðRÞ, continuous across the walls, which reproduces
the expected contributions of single-particle states to the
Witten index in the limit R → ∞. We conjecture that these
two functions are equal, which allows us to predict the
contributions of the continuum of multiparticle states
to Iðβ; u; CÞ.
The clue for our construction comes from an analogous

problem in superstring theory, namely, the vector multiplet
moduli space ~M3 in type IIA/B string vacua of the form
R3 × S1ðRÞ ×Y where Y is a Calabi-Yau threefold. After
T duality on the circle and its decompactification, the same
moduli space describes the hypermultiplet sector of the
dual type IIB/A theory on R4 ×Y [23]. In contrast to the
gauge theory case, ~M3 is a quaternion-Kähler (QK)
manifold, where R appears as one of the coordinates. In
the limit R → ∞, the metric is obtained by the “local
c-map” procedure from the vector multiplet moduli space
~M4 in type IIA/B onR4 ×Y [24], whereas for finite radius
it receives Oðe−RÞ corrections from four-dimensional BPS
states winding around the circle (T dual to D-instantons).
These instanton corrections can be incorporated through
the twistor space construction [25,26] (see Refs. [27,28] for
reviews). However, unlike the gauge theory setup, the
instanton series is divergent due to the exponential growth
of the BPS indices. Arguably, this is resolved by the
existence of further gravitational (or NS5-brane) instanton
corrections of order e−R

2

[29]. In the sector with zero NUT
charge, which is insensitive to these additional instantons,
the twistorial construction of [25,26] is formally isomor-
phic to the gauge-theoretic one [2], specialized to the case
of theories with a nonanomalous Uð1ÞR symmetry,

PRL 114, 121601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 MARCH 2015

121601-2



described by a homogeneous prepotential FðXÞ of degree
two. This isomorphism was shown to be a particular
instance of a general correspondence between QK metrics
with quaternionic Uð1Þ action and HK metrics with Uð1Þ
isometry rotating the complex structures [30–32] (the
correspondence proceeds by lifting the Uð1Þ action on
the QK manifold to the Swann bundle and then taking the
HK quotient). Through this correspondence, the family of
HK metrics M3ðRÞ inherits a canonical function, the
moment map of the Uð1ÞR action, which is smooth as
long as the metric on M3ðRÞ is. On the QK side it appears
as the “contact potential,” which relates the Oð2Þ-twisted
canonical one-form to the holomorphic contact one-form
[25,33]. As we explain in the Supplemental Material [34],
which includes Ref. [35], a generalized contact potential
can be defined even when the prepotential F is not
homogeneous, and understood geometrically as the ratio
of two Hermitian metrics on the canonical line bundle
constructed in [36].
A family of smooth functions on M3ðRÞ.—To define our

candidate for the Witten index I , let us first recall the
twistorial construction of the HK metric on M3ðRÞ [2]
(see [37] for a review). The twistor spaceZ ¼ Pt ×M3ðRÞ
carries a family of functions fX γðtÞgγ∈Γ, holomorphic in
complex structure JðtÞ, satisfying the integral equa-
tions [38]

X γ

X sf
γ
¼ exp

�X
γ0

Ωðγ0Þ
4πi

hγ;γ0i
Z
lγ0

dt0

t0
tþ t0

t− t0
log(1−X γ0 ðt0Þ)

�
;

ð3Þ

where lγ0 are the BPS rays ft0 ∈ C×∶Zγ0=t0 ∈ iR−g and
X sf

γ provide the boundary conditions at R → ∞,

X sf
γ ¼ σγe−πiRðt

−1Zγ−tZ̄γÞ−2πihγ;Ci: ð4Þ

Here Zγ ¼ hγ; Xi is the central charge and X ¼ ðXΛ; FΛÞ is
the holomorphic symplectic section on the special Kähler
manifold M4 with FΛ ¼ ∂XΛF in special coordinates. In
the limit R → ∞, the system (3) can be solved iteratively,
generating a sum of products of iterated integrals of X sf

γ

interpreted as multi-instanton contributions. Given such a
solution, the triplet of Kähler forms on M3ðRÞ, which
define the metric, is read off from the Oð2Þ-twisted
holomorphic symplectic form on Z,

ω ¼ it−1ωþ þ ω3 þ itω− ¼ ϵab

8π2
dX γa

X γa

∧ dX γb

X γb

; ð5Þ

where γa is a basis of Γ, and ϵab is the inverse of hγa; γbi.
With these notations in place, fix any smooth function

Fγðt; u; CÞ on Γ × Z, linear in γ and define

ΦðR; u; CÞ ¼
X
γ

ΩðγÞ
Z
lγ

dt
t
Fγ log ð1 − X γÞ: ð6Þ

We claim that Φ is a smooth function on M3ðRÞ, provided
the BPS indices ΩðγÞ jump across walls of marginal
stability according to the standard wall-crossing formula
[5]. Indeed, on a wall Wðγ1; γ2Þ, where the central charges
Zγ1 , Zγ2 associated to two primitive charge vectors become
aligned in the complex plane, the BPS rays lmγ1þnγ2 with
m; n ≥ 0 all coalesce into one ray l, across which the
potential discontinuity is given by

ΔΦ ¼
Z
l

dt
t

X
γ

Fγ½ΩþðγÞ log ð1 − Xþ
γ Þ

− Ω−ðγÞ log ð1 − X−
γ Þ�; ð7Þ

where Ω�ðγÞ and X�
γ are the BPS indices and solutions of

the corresponding Eqs. (3) on either side of the wall. Now,
recall that the semiclassical limit of the motivic version of the
wall-crossing formula implies the functional identity [31]

X
γ

ΩþðγÞLσγ ðXþ
γ Þ ¼

X
γ

Ω−ðγÞLσγ ðX−
γ Þ; ð8Þ

where LεðzÞ is a variant of the Rogers dilogarithm,

LεðzÞ≡ Li2ðzÞ þ
1

2
logðε−1zÞ logð1 − zÞ: ð9Þ

The invariance of (8) under monodromies Mγ∶X γ0 ↦
e2πihγ;γ0iX γ0 leads to the Γ-valued identity

X
γ

γ½ΩþðγÞ log ð1−Xþ
γ Þ−Ω−ðγÞ log ð1−X−

γ Þ� ¼ 0: ð10Þ

The vanishing of the discontinuity (7) then follows from (10)
and from the linearity of Fγ with respect to γ.
A candidate for the Witten index.—Having constructed a

family of smooth functions onM3ðRÞ, we now aim for one
that may plausibly be identified with the Witten index (2).
For HK manifoldsM3ðRÞ related to QK manifolds ~M3 by
the QK-HK correspondence, a natural candidate is the
contact potential on ~M3 [25,33], which translates on the
HK side into

I ¼ R
16iπ2

X
γ

ΩðγÞ
Z
lγ

dt
t
ðt−1Zγ − tZ̄γÞ log½1 − X γðtÞ�:

ð11Þ
This function is a member of the family (6) with
FγðtÞ ∝ t−1Zγ − tZ̄γ , so it is smooth across walls of
marginal stability. Its reality follows from the reality
property X γð−1=t̄Þ ¼ X−γðtÞ and the CPT relation
Ωð−γÞ ¼ ΩðγÞ.
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In order to assess whether (11) qualifies to represent
the Witten index, let us compute the formal multi-instanton
expansion of I , by substituting the iterated solution

of (3) into (11). Up to second order, I ¼ P
γI

ð1Þ
γ þP

γ;γ0I
ð2Þ
γ;γ0 þ � � � with

I ð1Þ
γ ¼ R

4π2
σγΩ̄ðγÞjZγjK1ð2πRjZγjÞe−2πihγ;Ci;

I ð2Þ
γ;γ0 ¼ −

R
64π3

Ω̄ðγÞΩ̄ðγ0Þhγ; γ0i
Z
lγ

dt
t

Z
l0γ

dt0

t0
tþ t0

t − t0

× ðt−1Zγ − tZ̄γÞX sf
γ ðtÞX sf

γ0 ðt0Þ; ð12Þ
where Ω̄ðγÞ ¼ P

djγð1=d2ÞΩðγ=dÞ denotes the rational
index. Remarkably, for primitive charge vector γ the

one-instanton contribution I ð1Þ
γ agrees with the contribution

of a single-particle, relativistic BPS state of charge γ and
massM ¼ jZγj to the Witten index (2). To see this, we use a
Schwinger time parametrization to linearize the relativistic
Hamiltonian H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ΔþM2

p
, and introduce a nonzero

chemical potential θ conjugate to J3 and periodic boundary
conditions ψðzÞ ¼ ψðzþ LÞ along the z axis, with
L ≫ 1=M, to regulate infrared divergences. Denoting by
χspinðθÞ the SUð2Þ character for the spin degrees of
freedom, we have

Tre−2πRHþiθJ3 ¼ R
Z

∞

0

dt

t3=2
Tre−πðR2=tÞ−πð−ΔþM2ÞtþiθJ3

¼ R
Z

∞

0

dt

t3=2
L

2π
ffiffi
t

p χspinðθÞ
4sin2ðθ=2Þ e

−πR2t −πM
2t

¼ L
2π

χspinðθÞ
4sin2ðθ=2Þ 2MK1ð2πMRÞ: ð13Þ

For a BPS multiplet of spin j, the spin character is

χspinðθÞ ¼
�
2þ 2 cos

θ

2

�
sin ½ðjþ 1

2
Þθ�

sinðθ=2Þ ; ð14Þ

corresponding to a BPS index ΩðγÞ ¼ 2∂2
θχspinðθÞjθ¼2π ¼

ð−1Þ2jð2jþ 1Þ. Comparing with the first line in (12) we find

I ð1Þ
γ ¼ 2Rlim

θ→2π
L→∞

∂2
θ

�
sin2ðθ=2Þ

πL
Trðσe−2πRHþiθJ3−2πihγ;CiÞ

�
:

ð15Þ

The factor sin2ðθ=2Þ=ð2πLÞ can be understood as dividing
by the regularized volume of R3.
Based on this agreement, and smoothness across walls of

marginal stability, we conjecture that (11) in fact computes
the Witten index (2), with the specific prescription given in
(15) for regulating infrared divergences. If true, this implies
that the two-instanton term I ð2Þ

γ;γ0 in (12) should be identified
with the contribution of the continuum of two-particle
states, and similarly for higher I ðnÞ’s.

Discussion.—In this article we conjectured a
formula (11) for the generalized Witten index (2) in
four-dimensional N ¼ 2 gauge theories. The formula is
manifestly smooth across walls of marginal stability, and
correctly reproduces the expected BPS bound states con-
tributions. The evidence for this conjecture is admittedly
weak, since within the class (6) of smooth functions on the
Coulomb branch M3ðRÞ in three dimensions, one could
easily find other functions which would differ only at
higher order in the multiparticle expansion. As we explain
in the Supplemental Material [34], our proposal is distin-
guished by the fact that I is related to the Kähler form and
hyperholomorphic curvature on M3ðRÞ, in accordance
with the general slogan that corrections to the moduli
space metric in theories with 8 supercharges are saturated
by 1=2-BPS contributions. The function I has also
appeared in the context of the analogy of the system (3)
with TBA equations [2], where it is identified with the free
energy of the corresponding integrable system [39], and in
the context of minimal surfaces in AdS5 [40,41]. It would
be interesting to extend our construction to gauge theories
with massive flavors [42].
If correct, our conjecture predicts that multiparticle state

contributions to the Witten index are universal functions of
the BPS indices ΩðγÞ associated with the constituents. The
predicted contribution of the continuum of two-particle states
can be found in (12), while higher orders can be easily
obtained by combining (11) with the iterated solution to the
TBA-like system (3). It is a challenge to check these
predictions from a direct computation of the difference of
densities of bosonic and fermionic states of a system of n
dyons. While the result near a wall of marginal stability can
actually be deduced by analyzing the nonrelativistic electron-
monopole system [43], the result (12) should hold throughout
moduli space, where the constituents are relativistic.
Note also that our conjecture naturally extends to the case

of N ¼ 2 string vacua, where the formula (11) computes
instanton corrections to the contact potential on the QK
moduli space ~M3 generated by multidyonic BPS black
holes. Therefore, another check would be to reproduce
the smooth, duality invariant partition function for two-
centered D4-D2-D0 black holes constructed in [44], extend-
ing the arguments in [45] beyond the one-instanton level.
As we have mentioned, the generalized Witten index (2)

may be viewed as the analog of the framed BPS index for a
trivial line defect. One possible way to derive (2) would
then be to study the fusion of two line defects whose
operator product expansion contain the trivial line defect.
This analogy also suggests the existence of a refined Witten
index, which would arise in the fusion of framed protected
spin characters. It is natural to conjecture that this
refined index might be related to the CFIV index of the
two-dimensional theory obtained by placing the four-
dimensional theory on an Ω-background with ϵ1 ≠ 0,
ϵ2 ¼ 0 [46].
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Finally, our conjecture—if true—could reveal interesting
and nontrivial information on BPS spectra which is not easily
accessible by other means. For example, consider a theory of
class S where the ultraviolet curve C is a compact Riemann
surface with negative curvature. In this case I tot is just the
moment map for the naturalUð1Þ action on Hitchin data and
hence proportional to the L2 norm square of the Higgs field
[32]. The expression (11) is highly nontrivial already in the
A1 case. In this case onemay be able to give a systematic large
R expansion of the norm square of the Higgs field by solving
the classical sinh-Gordon theory on C. Using the paramet-
rization of Ref. [47], Eq. (13.14), it is easy to show that, on a
real slice of moduli space one needs to expand

I tot ¼
iR2

4

Z
C
λλ̄ coshð2hÞ ð16Þ

at large R for solutions to the sinh-Gordon equation

∂∂̄h − 2R2λλ̄ sinhð2hÞ ¼ 0; ð17Þ

with boundary condition h ∼ − 1
2
log jz − zaj þ � � � at the first

order zeros z ¼ za of the quadratic differential λ2.We hope to
return to this problem in a future publication.
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