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The ability to implement adiabatic processes in the mesoscale is of key importance in the study of
artificial or biological micro- and nanoengines. Microadiabatic processes have been elusive to experimental
implementation due to the difficulty in isolating Brownian particles from their fluctuating environment.
Here we report on the experimental realization of a microscopic quasistatic adiabatic process employing a
trapped Brownian particle. We circumvent the complete isolation of the Brownian particle by designing
a protocol where both characteristic volume and temperature of the system are changed in such a way that
the entropy of the system is conserved along the process. We compare the protocols that follow from either
the overdamped or underdamped descriptions, demonstrating that the latter is mandatory in order to obtain
a vanishing average heat flux to the particle. We provide analytical expressions for the distributions of the
fluctuating heat and entropy and verify them experimentally. Our protocols could serve to implement the
first microscopic engine that is able to attain the fundamental limit for the efficiency set by Carnot.
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Stochastic energetics [1,2] and the fluctuation theorems
[3] have been developed as the theoretical framework
that studies thermodynamics at small scales, thus establish-
ing the emerging field of stochastic thermodynamics.
In parallel, recent advances on micromanipulation and
force-sensing techniques [4] have allowed to measure
the dynamics and energy changes in physical systems
where thermal fluctuations are relevant [5–9] and to test
theoretical results derived from stochastic thermodynamics
[10–15]. As a major application, miniaturization of thermo-
dynamic engines to single-molecule devices has been
possible for the case of Stirling engine [16] or a variety
of Maxwell’s demons [15,17,18].
Until now, the design of microscopic heat engines has

been restricted to those cycles formed by isothermal proc-
esses or instantaneous temperature changes [16], where the
validity of a heat fluctuation theorem has been tested [19].
Recent works have shown that exerting random forces on a
microscopic particle one can accurately tune the effective
kinetic temperature of the particle both under equilibrium
[20–22] and nonequilibrium driving [23]. However, the
application of such a technique to implement nonisothermal
processes has not been fully exploited yet [24].
Among all the nonisothermal processes, adiabatic proc-

esses are of major importance in thermodynamics since
they are the building blocks of the Carnot engine [25].
Microadiabaticity, i.e., true adiabaticity (TA) at the micro-
scopic scale, cannot be realized for single trajectories due to
the unavoidable heat flows between microscopic systems
and their surroundings. However, a process where no net

heat transfer is obtained when averaged over many trajec-
tories, or mean adiabatic (MA) could, in principle,
be realized. For simplicity, we will refer in the following
MA processes as adiabatic processes.
The notion of microadiabaticity has been studied

theoretically since the first models of microscopic heat
engines [26]. Schmiedl and Seifert devised a Brownian
heat engine with two instantaneous steps in which the
positional Shannon entropy of the system is conserved
[27]. Further theoretical developments have considered
the case of adiabatic processes in the underdamped limit
[28,29]. The first experimental studies of microscopic
heat engines [16] and nonisothermal processes [19] have
not realized the case of adiabatic processes in the meso-
scale yet.
In this Letter, we report on the realization of quasistatic

adiabatic processes with an optically trapped microparticle
whose kinetic temperature is controlled by means of an
external noisy electric field [21,24]. We provide a complete
characterization of the thermodynamics of such adiabatic
processes. The contributions due to the heat transferred
to the momentum degree of freedom are also considered
[24], thus adopting the full, underdamped description of
the system. Interestingly, we show that doing so does not
constitute a trivial extension of the overdamped description,
but distinct features clearly arise. In particular, we discuss
the shape of the distribution of the fluctuations of heat
and entropy, concluding that asymmetries in the heat
distributions are a fingerprint of quasistatic nonisothermal
processes.
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In TA processes, the total heat transferred from the
environment to the system Q vanishes, and the heat
distribution is ρTAðQÞ ¼ δðQÞ. The fluctuations of the
work, W ¼ ΔE, E being the total energy, are distributed
as a piecewise exponential function. In the microscopic
regime, one can attain processes where hQi ¼ 0, h·i
denoting average over many realizations in the quasistatic
limit. In the latter case, at odds with the TA, the work is
delta distributed, ρðWÞ ¼ δðΔE − hQiÞ [2], whereas the
heat is distributed with the same distribution as ρTAðWÞ
[30]. Microadiabatic processes are those where the phase
space volume is conserved [26]. In the overdamped limit,
where changes in the momentum degree of freedom are
neglected, such condition is met by keeping the position
distribution constant [33]. However, as we discuss below,
the overdamped approximation is incomplete when deal-
ing with nonisothermal processes. A process where only
the position distribution is conserved is therefore a
pseudoadiabatic, since an unavoidable amount of heat
is transferred due to the kinetic energy change [27]. In
contrast, in the actual adiabatic process, the full phase
space volume is conserved and no net heat is transferred to
the particle on average [26,28]. Figure 1 illustrates the
difference between the evolution of the phase space
along both quasistatic pseudoadiabatic and adiabatic
processes. Notice that only in the adiabatic process the
phase space volume enclosed by the energy surface
defined by the system’s energy at every moment

Hðx; vÞ ¼ E is conserved, as required for a quasistatic
and adiabatic change of parameters [26].
Our system of study is a microparticle of radius

R ¼ 500 nm immersed in water trapped by an optical
harmonic optical potential UðxÞ ¼ 1

2
κx2, where κ is the

stiffness of the trap and x the position of the particle with
respect to the trap center. The key capability of our setup
is the independent control of the kinetic temperature of
the trapped bead Tkin and κ, thus allowing one to design a
large variety of different thermodynamic processes [23,24].
Both parameters can be electronically synchronized in
order to fulfill any desired protocol with high time
resolution, of the order of μs.
Tkin is defined from the application of equipartition

theorem to the fluctuations of the position of the bead
in the trap as follows. The mean squared displacement
hx2i obeys equipartition theorem, κhx2i ¼ kT, k being
Boltzmann’s constant and T the temperature of the sample
[34]. Applying to the particle an external random force
characterized by a Gaussian white noise process of ampli-
tude σ, we can mimic the kicks of the solvent molecules
to the bead in a higher temperature reservoir Tkin. In the
presence of such a noise, the kinetic temperature is
Tkin ¼ κhx2i=k ¼ T þ σ2=2γk ≥ T, γ ¼ 6πηR being the
Stokes friction on a sphere in a fluid with kinetic viscosity
η far away from a surface. These two parameters can be
easily controlled, since κ is proportional to the intensity of
the trapping laser [35] and Tkin increases linearly with the
square of the amplitude of a noisy voltage applied to a pair
of electrodes in the fluid chamber [30,36]. See Fig. 2(a)
for a sketch of the experimental system.
We experimentally realize protocols that conserve either

the Shannon entropy in the overdamped approximation,
SxðtÞ or the full Shannon entropy in the underdamped
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FIG. 2 (color online). Experimental setup and experimental
protocols. (a) Sketch of the experimental setup. The kinetic
temperature Tkin of a microparticle in an optical trap of stiffness κ
is controlled with a noisy electric field. (b) Pseudoadiabatic
protocol. Kinetic temperature from the mean squared displace-
ment, κhx2i=k (left axis, blue solid line), kinetic temperature from
the calibration (left axis, blue dashed line) and stiffness of the trap
(right axis, red dash-dot line) as functions of time. (c) The same as
(b) but for the adiabatic process. Notice the larger fluctuations as
Tkin increases.

FIG. 1 (color online). Illustration of the pseudoadiabatic and
adiabatic processes. A Brownian particle of mass m in a thermal
bath at temperature T moves in one dimension x with velocity v
and is trapped with a harmonic potential UðxÞ ¼ 1

2
κx2. The blue

solid circle Γ1 represents the ensemble of microstates described
by a Hamiltonian Hðx; vÞ ¼ 1

2
κx2 þ 1

2
mv2 with a given energy

Hðx; vÞ ¼ E ¼ kT. Position and velocity are normalized by their
standard deviation from the equipartition theorem, σx ¼

ffiffiffiffiffiffiffiffiffiffiffi
kT=κ

p
and σv ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kT=m

p
. The red dashed ellipse Γ2 is the microstate set

at the same energy but after two different adiabatic processes:
(a) Pseudoadiabatic process, where Tfin ¼ 2T and κfin ¼ 2κ
(i.e., T=κ ¼ const); (b) adiabatic process, where Tfin ¼ 2T and
κfin ¼ 4κ (i.e., T2=κ ¼ const). The arrows indicate the direction
in which the process occurs.
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description, SðtÞ. In the quasistatic limit, the theoretical
values for their increments ΔSxðtÞ ¼ SxðtÞ − Sxð0Þ and
ΔSðtÞ ¼ SðtÞ − Sð0Þ are, respectively, [30]

ΔSxðtÞ ¼
k
2
Δ
�
ln
TkinðtÞ
κðtÞ

�
; ð1Þ

ΔSðtÞ ¼ kΔ
�
ln
T2
kinðtÞ
κðtÞ

�
: ð2Þ

We therefore implement the pseudoadiabatic protocol,
where TkinðtÞ=κðtÞ ¼ const [see Fig. 2(b)] and the
actual adiabatic protocol, where T2

kinðtÞ=κðtÞ ¼ const [see
Fig. 2(c)]. All the protocols presented here have a duration
of τ ¼ 0.5 s. Since the relaxation time of the particle in
the trap τc is of the order of milliseconds [24], then
τ ≫ τc ∼ms and the processes can be considered as
quasistatic. The latter is confirmed in Figs. 2(b)–2(c),
where we show that the measured kinetic temperature
fluctuates around the value prescribed by the protocol.
After defining and implementing the desired protocols,

we calculate the thermodynamic quantities from measure-
ments of the position of the trapped bead, the stiffness of the
trap and the kinetic temperature of the bead, the latter being
obtained from standard calibration procedures [30,36]. The
data acquisition frequency was f ¼ 1=Δt ¼ 1 kHz. The
work done on the particle in the time interval ½t; tþ Δt� is
calculated as δWðtÞ ¼ Uðxt; tþ ΔtÞ −Uðxt; tÞ, xt being the
position of the particle at time t [17]. The heat transferred
from the thermal bath to the position of the particle is
calculated as δQxðtÞ ¼ UðxtþΔt; tþ ΔtÞ −Uðxt; tþ ΔtÞ.
The internal energy change is measured as the sum of
the heat and the work transferred to the particle, ΔUðtÞ ¼
δWðtÞ þ δQxðtÞ ¼ UðxtþΔt; tþ ΔtÞ −Uðxt; tÞ. In the limit
Δt → 0, the cumulative sum up to time t of our definitions
of heat and work return Sekimoto’s expressions

R
δWðtÞ→R ð∂U=∂tÞdt and

R
δQxðtÞ→

R ð∂U=∂xÞ∘dx, where ∘
denotes the Stratonovich product [2,30]. Ensemble averages
and probability distributions are calculated from data sets
of 900 repetitions of each process.
We estimate the kinetic energy changes following

the technique described in [24]. The sampling frequency
in our experiment is far below the momentum relaxation
frequency fp ¼ γ=2πm ∼MHz, m being the mass of the
bead [37]. Therefore, we can only measure time averaged
velocities v̄t ¼ ðxtþΔt − xtÞ=Δt rather than instantaneous
velocities vt. In the quasistatic limit, the mean squared
instantaneous velocity can be extrapolated from the mean
squared time averaged velocity, hv2t i ¼ Lthv̄2t i, where
Lt ¼ Ltðf; κt; γ; mÞ is a function of the sampling frequency
as well as of the parameters of the system at time t [24].
The ensemble average kinetic energy change can be
therefore calculated as hΔEkinðtÞi¼ðm=2Þ½hv2tþΔti−hv2t i�¼
ðm=2Þ½LtþΔthv̄2tþΔti−Lthv̄2t i� [30]. The velocity distribu-
tions provide experimental access to the underdamped

Shannon entropy of the system at any time t, hSti ¼
−k

R
ρðxt; vt; tÞ ln ρðxt; vt; tÞdxtdvt [33,38], and of the aver-

age system entropy change in ½0; t�, hΔSðtÞi ¼ hSti − hS0i.
The overdamped Shannon entropy is obtained neglecting the
velocity degree of freedom, hSx;ti¼−k

R
ρðxt;tÞlnρðxt;tÞdxt.

Using the aforementioned definitions of energetic quan-
tities and entropy, we can now characterize the two types
of microadiabatic processes. Figure 3(a) shows ensemble
averages of the cumulative sum of work, heat, kinetic
energy, internal energy, and total energy for the pseudoa-
diabatic process, all in agreement with the expected
values from equilibrium thermodynamics. The average
heat transferred to the position degree of freedom
vanishes within experimental errors, yielding a net positive
total value of the heat hQðtÞi¼hQxðtÞiþhΔEkinðtÞi¼
ðk=2Þ½Tkin;t−Tkin;0�>0. The average overdamped entropy
change vanishes along the protocol, hΔSxðtÞi¼ 0, as
shown in Fig. 3(b). The pseudoadiabatic nature of the
protocol is revealed as a positive full system entropy
change, hΔSðtÞi > 0 [red curve in Fig. 3(b)]. For the
adiabatic protocol [Fig. 2(c)], the ensemble average of
the total heat transferred to the particle vanishes within
experimental errors, hQðtÞi ¼ 0, as shown in Fig. 3(c).
As a result, the system entropy change vanishes along the
adiabatic process hΔSðtÞi ¼ 0 despite entropy is reduced in
the position degree of freedom, as shown in Fig. 3(d).
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FIG. 3 (color online). Ensemble averages of the cumulative
sums of thermodynamic quantities as a function of time in
the pseudoadiabatic (a)–(b) and adiabatic (c)–(d) processes.
(a) Energy as a function of time for the pseudoadiabatic process,
hWðtÞi (blue), hQxðtÞi (red), hΔEkinðtÞi (green), hQðtÞi (cyan),
hΔUðtÞi (magenta), and hΔEðtÞi (black). (b) System entropy as a
function of time for the pseudoadiabatic process, hΔSxðtÞi (blue)
and hΔSðtÞi (red). (c) Energetics of the adiabatic process.
(d) System entropy change in the adiabatic process. Dashed
curves are the theoretical values of the thermodynamic quantities
obtained in the quasistatic limit.
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Let us now consider the fluctuations of the measured
quantities. The shape of these distributions reveals quali-
tative differences between the considered processes.
First, in Fig. 4 we show the experimental probability
density function of Qx (symbols) for the two adiabatic
processes considered. We also include the distributions
for two control processes: an isothermal process, where
Tkin;t ¼ 300 K while κ changes linearly in time from
κ0 ¼ ð5.0� 0.2Þ pN=μm to κτ ¼ ð28.0� 0.2Þ pN=μm,
and an isochoric process, where κt ¼ð18.0�0.2Þ pN=μm
while the kinetic temperature changes linearly from
Tkin;0 ¼ 300 K to Tkin;τ ¼ 1200K [24].
Remarkably, we notice that the heat distribution is

asymmetric around its mean for all the nonisothermal
processes. The measured heat distributions can be well
described by

ρðQxÞ ¼
βG
π
exp

�
−
Δβ
2

ðQx þ hWiÞ
�
K0ðβ̄jQx þ hWijÞ;

ð3Þ

where β0 ¼ 1=kTkinð0Þ, βτ ¼ 1=kTkinðτÞ, Δβ ¼ βτ − β0,
β̄ ¼ ðβ0 þ βτÞ=2, βG ¼ ffiffiffiffiffiffiffiffiffi

β0βτ
p

, K0 is the zeroth order
modified Bessel function of the second kind and hWi
is the ensemble average of the work in the quasistatic
limit [30]. Equation (3) was obtained with the only
assumption of quasistaticity along the process, thus
proving that the asymmetry of the distribution of Qx
around −hWi is a consequence of the nonisothermal
character of the process, and not of any nonequilibrium
constraint of the system, as suggested in Ref. [19]. For
the isothermal case, Δβ ¼ 0 and we recover the

symmetric distribution ρðQxÞ ¼ ðβ=πÞK0½βjQx þ hWij�,
first derived by Imparato et al. [39].
The asymmetry observed in the heat fluctuations is not

present in the distribution of the entropy. The distribution of
the overdamped entropy change along the whole process is
symmetric around its mean value for both pseudoadiabatic
and adiabatic cases, as shown in Fig. 5. Both distributions
fit well to the expected value for general quasistatic
nonisothermal processes [30],

ρðΔSxÞ ¼
1

πk
K0

�jΔSx − hΔSxij
k

�
: ð4Þ

We also calculate the distribution of the full system entropy
change along the whole process in both pseudoadiabatic
and adiabatic processes (see Fig. 5). System entropy
change is distributed symmetrically around its mean value
but presents a different qualitative behavior, in this case
described by [30]

ρðΔSÞ ¼ 1

2k
exp

�
−
jΔS − hΔSij

k

�
: ð5Þ

Notice that in the case of the full system entropy change,
the agreement with the theory extends over one order of
magnitude less than in the overdamped description, ΔSx.
This mismatch is caused by the poor estimation of the tails
of the distribution of the instantaneous velocity from the
distribution of the time averaged velocity.
To summarize, we have realized quasistatic adiabatic

processes with a single microparticle trapped with optical
tweezers. We have studied the difference between the mean
pseudoadiabatic (position distribution conserving) and
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FIG. 4 (color online). Distribution of the heat absorbed by the
particle in the position degree of freedom Qx for different
thermodynamic processes: isothermal (blue circles), isochoric
(red squares), pseudoadiabatic (green stars), and adiabatic (black
crosses). The distributions are obtained from 900 cycles. The
lines are theoretical distributions obtained from Eq. (3) using the
initial and final values of kinetic temperature and stiffness used
in the experiments, for the different processes: isothermal (solid
line), isochoric (dashed line), pseudoadiabatic (dotted line), and
adiabatic (dashed-dotted line).
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FIG. 5 (color online). Distribution of the system entropy change
in the overdamped description,ΔSx (blue squares) and of the total
system entropy change ΔS (red circles) in the pseudoadiabatic
(open symbols) and adiabatic (closed symbols) processes shown
in Figs. 2(b) and 2(c). The distributions are obtained from 900
cycles. Theoretical distributions for ΔSx [blue solid curve,
Eq. (4)] and ΔS [red dashed curve, Eq. (5)] are also shown.
All the quantities are shifted by their mean such that the mean of
the represented quantities is zero.
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mean adiabatic (phase space volume conserving) processes,
showing that only the latter are such that the average total
heat vanishes in the ensemble average. The fluctuations
of the heat transferred to the position of the particle have
been shown to be asymmetric for any nonisothermal
(equilibrium or nonequilibrium) process. The description
of the dynamics of the system with full or limited
information affects not only the average values of the
entropy but also the fluctuations, showing a different
qualitative behavior. The studied microadiabatic protocols
could be used to design a microscopic-sized Carnot engine
by a cyclic sequence of isothermal and adiabatic processes,
thus extending our understanding of micro- and nano-
electromechanical systems towards new and efficient
engines [26,27,40,41].
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