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A general scheme to realize a perceptron for hardware neural networks is presented, where multiple
interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials
process information by coupling different points of reciprocal space. The necessary potential shape is
obtained from the Hebbian learning rule, either through exact calculation or construction from a
superposition of known optical inputs. This allows implementation in a wide range of compact optical
systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography,
and (3) exciton-polariton systems with phonon or nuclear spin interactions.
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Neural networks exploit massive interconnectivity to
become highly efficient at certain tasks, such as classi-
fication, and pattern recognition [1,2]. While biological
neurons may operate individually on millisecond time
scales, their simultaneous connection to several thousands
of other neurons allows a parallelization of tasks far
beyond the capabilities of complementary metal-oxide-
semiconductor (CMOS) logic. Naturally, this observation
has motivated research into artificial neural networks,
including hardware implementations [3]. Electrically con-
nected systems have been based on inorganic synapses [4],
spiking silicon circuits [5,6], feedback on Bose-Einstein
condensates [7], memristors [8], or spin torque devices [9]
such as nanomagnetic spin switches [10]. Optical systems
can exploit vector matrix multiplication [11] or fractional
Fourier transforms [12].
In models of neuron behaviour or in artificial neural

networks, an individual neuron gives an output given by

ξouti ¼ f

�X
j

wijξ
in
j

�
ð1Þ

where f is some function depending on the sum of inputs
from several input neurons, ξinj , each multiplied with a
different weight wij. The weights represent the “knowl-
edge” in the system and are adjusted in a “learning” process
or set externally for the desired function.
Given Eq. (1), an artificial neural network requires three

ingredients: (a) A large number of interconnections
between different neurons, (b) The possibility of different
weights for each interconnection, (c) Flexibility in the
choice of weights to allow learning. A two-layer network
with one set of inputs and one layer of output neurons is
already a powerful unit, known as a perceptron, capable of
the linear classification of data and pattern recognition.
However, a small device with 35 inputs and 10 outputs
already requires 350 independent weight connections.

In electrical devices the engineering of so many connec-
tions is a serious task. Optical designs can benefit from
the overlapping of several different light rays to build these
connections; however, the controlled weighting of con-
nections often requires separate electronic connections or
bulky spatial light modulators.
Here a simple scheme of a perceptron is demonstrated,

based on the superposition of an ensemble of waves. A
model based on the Schrödinger equation illustrates the
wide applicability of the scheme, which is compatible with
a range of micron-sized solid-state implementations where
a spatially varying potential is available. Examples include
(1) nonlinear optical systems, (2) systems microstructured
by optical lithography, and (3) exciton-polariton systems
with (i) acoustic phonon interactions or (ii) nuclear spin
interactions. In general, the weights in the system can be
calculated using the Hebbian learning rule or constructed
via a superposition of optical waves. In examples 1 and 2,
the weights are then written with a fixed potential. In
example 3, the change (plasticity) of the effective potential,
under a given set of inputs and outputs, allows a direct
demonstration of Hebbian learning in which the system
adapts automatically to perform the desired network
function. The advantage of the proposed general scheme
is that it is not necessary to construct or control each weight
individually; it is only necessary to provide the appropriate
stimulus as a combination of known input and output
waves. Both permanent weightings for repetitive tasks
as well as reconfigurable networks are possible. For
illustration, the task of pattern recognition is considered.
Operation on ultrafast (picosecond) time scales is expected.
General scheme.—Let us consider the 2D Schrödinger

equation for particles with a wave function ψðxÞmoving in
a spatially varying potential VðxÞ:

iℏ
∂ψ
∂t ¼ (Ê − iΓ̂þ VðxÞ)ψ þ FðxÞ ð2Þ

PRL 114, 118101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

0031-9007=15=114(11)=118101(6) 118101-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.118101
http://dx.doi.org/10.1103/PhysRevLett.114.118101
http://dx.doi.org/10.1103/PhysRevLett.114.118101
http://dx.doi.org/10.1103/PhysRevLett.114.118101


where Ê represents the kinetic energy and we allowed for
driving (F) and decay terms (Γ), corresponding to a
nonequilibrium system. The kinetic energy is measured
from the energy associated with the driving field energy.
Let us imagine a potential of the form

VðxÞ ¼
X
ij

Vij cos ½ðki − kjÞ:x� ð3Þ

where the spatially dependent part of the wave function and
driving terms can be decomposed into Fourier components
in reciprocal space:

ψðxÞ ¼ 1ffiffiffi
S

p
X
i

ψ ieiki:x; ð4Þ

FðxÞ ¼ 1ffiffiffi
S

p
X
i

Fieiki:x; ð5Þ

where S is the area of the system and we restrict the driving
field to wave vectors of the same magnitude, such that
all states in the system have the same energy (which is
conserved). Substituting Eqs. (3)–(5) into Eq. (2) and
collecting terms oscillating at the same wave vector, we
obtain

iℏ
∂ψ i

∂t ¼ ðE0 − iΓ0Þψ i þ
X
j

Vijψ j þ Fi; ð6Þ

where E0 and Γ0 are the energy and decay rates at jkij
(now the same for all particles). We divide reciprocal space
into a half containing driven wave vectors, which will
characterize a vector of inputs in the system, F1, F2, etc.,
and a half for the output. During training the amplitudes
Fi ∈ ð0; F0Þ can take one of two values each, representing
a binary input [see illustration in Fig. 1(a)].
Assuming that Vij is small, the steady state values in the

input half of reciprocal space are

ψ i ¼ −
Fi

E0 − iΓ
: ð7Þ

States in the output half of reciprocal space are reached via
scattering with Vij, giving the amplitudes

ψ i ¼ −
P

ijVijψ j

E0 − iΓ
¼

P
jVijFj

ðE0 − iΓÞ2 : ð8Þ

In other words, the output intensities, jψ ij2, are a function
of

P
jVijFj, where Fj are the inputs and Vij are the weight

connections, as required for a neural network.
Hebbian learning.—For a network to be useful, the

weights Vij must be chosen to give the desired network
function. Under Hebbian learning, neuron connection
weights are increased when input and output neurons fire
simultaneously. This allows training of the network where
an input vector is applied and the desired output state
is simultaneously activated. Repeating the process over a
“training set” of input vectors allows the system to learn
how to distinguish different inputs, its ability being
encoded in neuron connection weights of the form

Vij ∝
X
fvg

Ffvg
i Ffvg

j ; ð9Þ

where we sum over different vectors in the training set,
which are labeled by the index v. Here the index i
represents vectors in the input half of reciprocal space.
To activate states in the output half of reciprocal space, we

apply the driving field represented by Ffvg
j .

Note that the driving field intensity for each training step
contains terms given by

jFfvg
i eiki:x þ Ffvg

j eikj:xj2

¼ 2Ffvg
i Ffvg

j cos½ðki − kjÞ:x� þ const: ð10Þ

Consequently, we seek a mechanism of varying the
potential VðxÞ in proportion to the driving field intensity
during the training phase. This gives a field with the same
form as in Eq. (3) with weights Vij following the Hebbian
learning rule [Eq. (9)]. The contribution of the constant in
Eq. (10) would also give a constant shift of the potential;
however, this can be fully compensated by varying the
energy of all the particles in the system (determined by the
driving field frequency).
As an illustration of Hebbian learning, we demonstrate

the task of pattern recognition, where the potential is
constructed from a superposition of known inputs and
outputs from a training set of numerical characters ranging
from 0–9. Figure 2 shows that input characters (top row) are
scattered to particular output wave vectors. In this way the
system recognizes the characters (bottom row), even if
the inputs contain multiple errors.

FIG. 1 (color online). (a) Training phase. A 35 pixel input set
corresponding to number one, is activated (blue/left-hand rays)
simultaneously with the desired output (red/right-hand rays). The
position of the activated output κ1 identifies the number one.
(b) Operation phase. The input set represents a digit with defects
and there is no driven field over the output. Scattering with the
potential nevertheless gives the maximum output corresponding
to jψκ1 j2 and the number can be recognized.
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A key ingredient of the scheme is that the required
potential has a spatial pattern proportional to the intensity
of a known optical field. In the rest of the Letter we
consider different possible physical realizations of the
potential. All cases follow the general recipe outlined
above and allow direct reproduction of Fig. 2.
Nonlinear optical systems.—Awide variety of nonlinear

optical systems are described by the nonlinear Schrödinger
equation, identical to Eq. (2) with an additional term
αjψ j2ψ . If we imagine that the system can be excited by
two different frequencies, ω1 and ω2, giving field compo-
nents ψ1 and ψ2, then we can use the frequency ω1 for
creating a potential of the form αjψ1j2 which is experienced
by ψ2. Each frequency component should again be decom-
posed in reciprocal space and the potential can be written
either by direct calculation of the necessary optical field or
by cycling over the input and output superpositions in the
training set. The advantage of an optically induced poten-
tial [13] is that it can be changed at will, allowing rapid
reconfiguration of the network function. Ideally, a system
has multiple resonant modes to allow the efficient injection
at different frequencies. Alternatively, one could make
use of excitation of two orthogonal polarizations, provided
there is some cross nonlinear interaction. The universality
of the nonlinear Schrödinger equation implies that reali-
zation in spinor Bose-Einstein condensates and nanopar-
ticle arrays [14] could also be arranged.
Optical lithography.—For repetitive applications, it

may be desirable to make use of a permanent potential.
These could be achieved by optical lithography, where
the effective potential (refractive index) of a material is
engineered in a thin film [15] with a pattern dependent on
its exposure to an incident optical field. The required
pattern can again be constructed from a superposition of
inputs fkig and desired outputs κ1 (see Fig. 1). In the
simplest case the material structure resulting from optical
lithography is varied between one of two values, represent-
ing a digitized potential VðrÞ → ðV0;−V0Þ. The act of
digitizing in real space does not alter the relative weights of
the relevant Fourier components of the potential such that
the correct output field is still obtained.
Semiconductor microcavities.—Exciton polaritons are

particles that appear in semiconductor microcavities due
to the strong coupling of quantum well excitons with cavity

photons [16]. Their injection into the system can be
controlled via optical excitation and nonlinear interactions
between polaritons have been considered for building optical
circuits based on binary logic architectures [17–19]. Neural
network architectures were not yet considered in this field,
although polaritons are indeed good candidates for operating
with variable potentials. For example, the injection of many
polaritons introduces an effective potential due to polariton-
polariton repulsion, which allows optical engineering of
the potential landscape [13], which is compatible with the
scheme outlined in Eq. (1). Exciton-polariton systems offer
further opportunities due to the existence of acoustic
phonons and nuclear spin polarizations, which can provide
a potential much longer lived than the typical picosecond
scale of polariton dynamics.
Acoustic phonons: The interaction between polaritons

and acoustic phonons is described by the Fröhlich
Hamiltonian [20,21]:

Hp ¼ X
X
q;k

ðGqb̂qâ
†
kþqâk þ G�

qb̂
†
qâkþqâ

†
kÞ ð11Þ

where âk and b̂q are polariton and field operators in
reciprocal space, respectively; X is the excitonic fraction
(Hopfield coefficient), which is the same for all polaritons
given that they all have the same energy; q ¼ ðq; qzÞ. The
explicit form of the exciton-phonon scattering amplitude
Gq is written in Ref. [21].
The phonon scattering rate can be calculated using the

Fermi golden rule,

Wij;qz ¼
2π

ℏ
jhkj; nqij;qz þ 1jHpjnqij;qz ;kiij2ϱsδEkj;qij

−Eki

¼ 2π

ℏ
jXG�

ij;qz
j2ϱsnpoli ðnphij þ 1Þðnpolj þ 1Þ; ð12Þ

where ϱs is the phonon density of states and npol, nph stand
for the polariton and phonon densities respectively.
We integrate the expression 2πjXG�

ij;qz
j2ϱs over qz (from

−2π=Lz to 2π=Lz, with Lz quantum well width) to obtain
the in-plane component of the scattering rate wij ≈
wðq → 0Þ≡ w. The dynamics of the phonon density is
then given by

ℏ
∂nphij
∂t ¼ wnpoli ðnphij þ 1Þðnpolj þ 1Þ − Γχn

ph
ij : ð13Þ

In analogy to Eq. (7), the polariton densities for the driven
signals follow npoli ¼ jFij2=ðE2

0 þ Γ2Þ. This allows straight-
forward calculation of the phonon densities obtained during
the training phase [Fig. 3(b)]. The optical driving field
stimulates the excitation of phonons with specific wave
vectors. In GaAs based systems the phonon lifetime has

FIG. 2 (color online). Pattern recognition of numbers. Top row:
Input characters containing several errors. Middle row: Light
scattered by the potential is mapped to different outputs. Bottom
row: Character recognized by the system.
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been measured in the range of 100 ns [22] for low
frequencies, which can be arranged by choosing small
wave vectors, jkij ¼ 0.5 μm−1, in reciprocal space.
Consequently, the phonons leave a long-lasting mark
through the polariton-phonon interactions, which will
allow the system to “memorize” the digit.
During the operation phase, the output signals obey

ℏ
∂npolj

∂t ¼
X
i

wnpoli ðnphij þ 1Þðnpolj þ 1Þ − Γnpolj : ð14Þ

For a weak polariton density during operation and Γ ≫ Γχ ,
the polariton output density is given by

npolj ¼
P

iwn
pol
i ðnphij þ 1ÞP

iwn
pol
i ðnphij þ 1Þ − Γ

ðeð
P

i
wnpoli ðnphij þ1Þ−ΓÞt − 1Þ:

ð15Þ

The analogy with Eq. (8) is most visible when Γ is large.
We verified that the obtained outputs allow the reproduc-
tion of Fig. 2 for both GaAs and GaN based systems.
Testing shorter phonon lifetimes revealed that Γχ is not a
critical parameter for obtaining the correct outputs. Γχ is
however important for determining the memory time of the
system, which is on the one hand longer than the polariton
lifetime to allow multiple repetitions and short enough to
allow rapid reconfiguration of the device.
Within our theory we have neglected polariton-polariton

scattering, which can in principle cause the redistribution of
polaritons between modes on the circle in reciprocal space
[23]. During training, this would have little effect as the
dominant fields would still be those directly driven by the
inputs; however, during operation it is implied that we
operate in the low density regime. Considering an excitation
polariton density of 1.5 × 107 cm−2, we obtain an output
density of 6 × 106 cm−2 within a picosecond time scale.
This output density is above the density that can be detected
in experiments [24,25], while also being below the density at
which nonlinear effects become important [25,26].
Dynamic nuclear polarization: If during the training

phase, the driving field is circularly polarized and the laser
energy Ep is increased so as to excite free electrons, then
one can consider the dynamic polarization of nuclei.
The hyperfine interaction between a single electron and
single nuclear spin is given by the Hamiltonian [27–29]

Hhf ¼ ν0AjΦðRÞj2ðÎxŜx þ ÎyŜy þ ÎzŜzÞ; ð16Þ

where ν0 is the unit cell volume and A is the hyperfine
coupling constant. ΦðRÞ represents the electron envelope
function, evaluated at the position of the nuclear spin. Î and
Ŝ represent the nuclear and electron spin operators,
respectively. An electron with spin polarized in say the

z direction can undergo a spin flip, transferring its spin to
a nucleus. The average nuclear spin polarization in the
system is determined by the rate equation

dhIzðxÞi
dt

¼ ΓhfðxÞðQhSzi − hIzðxÞiÞ −
hIzðxÞi

τ
; ð17Þ

where τ is the nuclear spin relaxation time, which takes
values at least on the order of microseconds [30,31] and
even up to minutes [32]. The quantity Q ¼ ½IðI þ 1Þ=
SðSþ 1Þ�, where I is the total nuclear spin and Sz ¼ 1=2
is the total spin of an electron. The hyperfine scattering
rate Γhf , was calculated for a semiconductor microcavity
in Ref. [33] and is proportional to the electron density.
Compared to the wavelength of polaritons, electrons do not
move significant distances during their lifetime such that
we can consider the hyperfine scattering rate as being
proportional to the optical field intensity. Solving Eq. (17),

hIzðxÞi ¼
ΓhfQSzð1 − e−ðΓhfþτ−1ÞtÞ

Γhf þ τ−1
: ð18Þ

For small quantum wells (Lz ∼ 10 nm) and electron density
around 1012 cm�2 we have that Γhf ≪ τ−1; therefore, we
can approximate the above expression as hIzðxÞi ¼
ΓhfQSzτð1 − e−t=τÞ. Consequently, the polariton potential
is given by VðxÞ ¼ XAhIzðxÞi ∝ jF0j2.
The potential that the nuclear spin polarization induces

on the polaritons is given by

Vij ¼
8τXA3QSzmeν

2
0IðI þ 1Þ

3ℏ3VLzE2
p

FiFj ð19Þ

with Ep ¼ EcðjkjÞ, the energy of the cavity mode at the
pump wave vector. The nuclear spin induced potential is
shown in Fig. 3(a), for different exposure times and
electron densities.
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FIG. 3 (color online). (a) Nuclear spin induced potential, given
by Eq. (19). (b) Phonon-induced weight wnij for a GaAs based
system [34]. The plots show the variation with the duration of
application of input ki and output kj, as well as the variation with
electron density (a) and polariton density (b).
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For the considered densities, the nuclear spin induced
potentials correspond to nuclear spin polarizations of
around 1%. While nuclear spin polarizations up to 3.3%
and 10% were observed in quantum wells [35] and
quantum dots [36], respectively, and higher electron den-
sities were considered in the literature [37], the small
nuclear spin induced potential is in fact sufficient for our
task. If one compares to the strength of disorder, which is
around 10 μeV in state-of-the-art samples, then the nuclear
spin induced potential may seem insignificant. However,
for the determination of the scattered polariton intensity
one must examine the Fourier components of the potentials.
In reciprocal space, the nuclear spin induced potentials
are localized at specific points while a random disorder
potential is spread widely. In fact, if one compares the
Fourier amplitude Vij to the typical Fourier amplitude
Vdisorder of a Gaussian correlated disorder potential, one
finds Vij=Vdisorder ¼ Vij

ffiffiffi
S

p
eðki−kjÞ2σ2=4=ðσVrmsÞ, where S is

the system area, σ the disorder correlation length, and Vrms
is the root mean squared amplitude of disorder. After
all training steps are completed Vij ∼ 2 μeV. Typically,
microcavities have a larger disorder than in Ref. [38],
characterized by a height of 0.1 meVor root mean squared
variation Vrms ≈ 10 μeV and correlation length σ ≈ 1 μm.
Taking these values, ki − kj ¼ 1 μm−1, and a wide exci-
tation area S ¼ 200 μm2, one finds that the ratio of
scattered polariton intensity in reciprocal space by the
nuclear spin induced potential and disorder potential is
nj=ndisorder ¼ ðVij=VdisorderÞ2 ∼ 1600. Consequently, the
nuclear spin induced potential has a much stronger effect
on polariton scattering than disorder, and would be clearly
visible experimentally on picosecond time scales [25].
Substituting Eq. (19) into Eq. (8), we verified that Fig. 2

was reproducible for typical parameters [34].
Conclusion.—We developed a general scheme to con-

struct perceptrons using wave ensembles, appropriate to a
wide range of optical systems. Unlike other hardware
implementations of neural networks, our general scheme
avoids the need to store and control the weight of each
network connection, wij, in an independent feedback loop.
A large number of weights are encoded in the form of the
spatially structured potential, which is constructed from
exposure to a known set of training conditions.
We considered three classes of example systems: (1) non-

linear optical systems, (2) systems patterned by optical
lithography, and (3) exciton-polariton systems. In nonlinear
optical systems, the optically induced potential can be
rapidly reconfigured, while optical lithography allows the
engineering of a permanent network for a repetitive task.
The exciton-polariton systems allow network weights to be
automatically chosen by phonons or nuclear spins inside
the system, allowing the system to learn in response to a
given set of stimuli. Because of the wide availability of
suitable systems, we believe this approach will lead to

ultrafast and compact hardware implementations of neural
networks as well as a new platform for machine learning.
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