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In the present work, we experimentally implement, numerically compute with, and theoretically analyze
a configuration in the form of a single column woodpile periodic structure. Our main finding is that a
Hertzian, locally resonant, woodpile lattice offers a test bed for the formation of genuinely traveling waves
composed of a strongly localized solitary wave on top of a small amplitude oscillatory tail. This type
of wave, called a nanopteron, is not only motivated theoretically and numerically, but is also visualized
experimentally by means of a laser Doppler vibrometer. This system can also be useful for manipulating
stress waves at will, for example, to achieve strong attenuation and modulation of high-amplitude impacts
without relying on damping in the system.
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Introduction.—Granular crystals are rapidly becoming a
popular vehicle for the theoretical study, numerical explo-
ration, and experimental identification of a wide range of
phenomena ranging from the near linear to the weakly or
even highly nonlinear limit [1–4]. The relevant chains
consist of assemblies of particles in one, two, and three
dimensions inside a matrix (or a holder) in ordered, closely
packed configurations. An especially appealing character-
istic of such structures is the ability to tune their dynamic
response by an applied static load. This may place the
system in a near linear or weakly nonlinear regime, in the
case of precompressed chains, or even in a highly nonlinear
regime, in the absence of such a static load (often termed
sonic vacuum, due to the vanishing sound speed in that
case) [1]. It is exactly this dynamic tunability and the
controllability of both the assembly and the measurement
of these settings that has enabled a wide range of proposals
for applications. Among others, we note shock and energy
absorbing layers [5–7], acoustic lenses [8], acoustic diodes
and switches [9,10], and sound scramblers [11].
While various geometries of building blocks have been

reported (e.g., spherical, toroidal, or elliptical shapes),
granular crystals in woodpile architectures, made of
orthogonally stacked rods, are largely unexplored. This
is in contrast to their electromagnetic counterpart—called
woodpile photonic crystals—that successfully demon-
strated their efficacy and versatility in manipulating electro-
magnetic waves [12,13]. Even existing studies on woodpile
phononic crystals are limited primarily to their linear elastic
responses [14–16], without addressing their nonlinear wave
dynamics.
In this Letter, we show that periodic structures in

woodpile configurations can be very useful in manipulating
highly nonlinear stress waves at will, including potentially
strong wave attenuation and spontaneous formation of

novel traveling waves after an impact excitation.
Arguably, the most fundamental waveform that arises in
granular chains within the sonic vacuum is a solitary wave
with a highly localized waveform [17–22]. Recently, other
types of coherent traveling waves in granular chains, within
the sonic vacuum, were predicted to exist: periodic trav-
eling waves [20,23] and static or traveling breathers in
granular chains including on-site potentials [24].
Here, we report experimental evidence of the existence

of a new type of nonlocal solitary wave within the sonic
vacuum. It consists of a highly localized solitary waveform
on top of an extended, small-amplitude periodic tail, existing
in granular chains with local resonators. Such a solution,
satisfying all the other requirements of a solitary wave
except that it asymptotes not to zero but to a small amplitude
oscillation at infinity, has been long termed a nanopteron
[25]. This nanopteron arises in numerous models including
continuum [26–28] and discrete [29] dynamical systems.
Some examples, like the ϕ4 breather, have received con-
siderable theoretical attention [26,30,31] and relevant
reviews or books have summarized much of this nonlocal
solitary wave activity [32,33]. Nevertheless, experimental
studies of the nanopteron are extremely limited [28].
In what follows, we present the experimental setup of the

woodpile lattice and a brief overview of its description via
an effective discrete element model (DEM). In different
regimes, we experimentally observe (i) the spontaneous
formation and steady propagation of the nanopteron, (ii) the
potential breathing of the solitary waves, i.e., modulation as
they travel, or (iii) the decay of the solitary waves, which is
due to the coupling to the internal resonant modes, rather
than the damping of the system. All of the relevant features
are corroborated by numerical computations, and some
of the salient features are explained theoretically. We thus
believe that this study provides a road map for further
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exploration and analysis of highly nonlinear waves in a host
of settings, including most notably granular chain models
with the addition of an internal resonator on each node,
a context that has recently been of considerable interest in
its own right [34–38].
Experimental and theoretical setup.—Figure 1 illustrates

the experimental setup of our 1D woodpile structure and the
corresponding DEM. The chain is composed of orthogo-
nally stacked cylindrical rodsmade of fused quartz (Young’s
modulusE ¼ 72 GPa, Poisson’s ratio v ¼ 0.17, and density
ρ ¼ 2200 kg=m3). We test three different rod lengths,
[20, 40, 80] mm, while keeping their diameters identical
to 5.0 mm. We excite the chain by striking the center of the
uppermost rod with a 10-mm-diameter glass sphere. While
we present in this Letter the results for a measured impact
velocity of V0 ¼ 1.97 m=s, the effect of varying striker
velocities can be found in the Supplemental Material [39].
We record the transmitted stress waves using a piezoelectric
force sensor (PCBC02) placed at the bottomof thewoodpile
chain. To investigate the propagating waveforms along the
path, we alter the number of stacked cylinders from 1 to N
(total number of cylinders) and synchronize the signals with
respect to the striker impact moment, which is detected by a
small piezoelectric ceramic plate bonded on the surface of
the top rod. A particular challengewithin our setup concerns
the experimental identification of the especially weak
oscillations of the unit cells that are critical for our reported
observation of the nanopteron. For this, we introduce a laser
Doppler vibrometer (Polytec, OFV-505), which is mounted
on an automatic sliding rail to detect localized vibrations of
each rod in the resolution of 0.02 μm=s=Hz1=2.
As suggested by Fig. 1(b), the dynamics of the woodpile

lattice along the axis of the contacts can be effectively
described by a system of nonlinear oscillators that are
coupled to adjacent masses. Assuming the principal nodes
(associated with the rods’ axial motion) to have mass M
and a coupling of βc, and the internal resonators within the
rods to have a coupling of k1 and a mass ofm1, we propose
the following generalized Hertzian DEM:

Müi ¼ β½ui−1 − ui�3=2þ − β½ui − uiþ1�3=2þ
þ k1ðvi − uiÞ; ð1Þ

m1v̈i ¼ k1ðui − viÞ; ð2Þ
where ui and vi are the displacements of the i-th primary
and auxiliary masses, and ½s�þ ¼ maxðs; 0Þ, implying no
tensile strength in the chain. This model allows us to
describe longitudinal excitations along the axis of the
contacts in the presence of internal vibration modes that
can store energy in their own right.
The effective parameters m1;M, and k1 of this DEM

description are determined via an optimization process
based on the envelopes of propagating waves (see the
Supplemental Material for further details [39]). Note that in
Eq. (1), β assumes the value βc within the chain, while it is
βs for the coupling of the striker to the first bead and βw for
the coupling of the last bead to the wall (cf. Fig. 1). In what
follows, we will rescale the time t → t

ffiffiffiffiffiffiffiffiffiffiffiffi
βc=M

p
and the

coupling κ ¼ k1=βc for the purposes of our analysis. The
mass ratio is denoted by ν ¼ m1=M.
Experimental observations, numerical corroboration,

and theoretical analysis.—Figures 2(a) and 2(b) illustrate
the comparison of the wave propagation in 1D woodpile
lattices composed of 20 particles of 20 and 40 mm rods,
respectively. Dashed red (solid black) curves represent the

FIG. 1 (color online). Schematic of (a) experimental setup and
(b) discrete element model; see text for details.

FIG. 2 (color online). Numerical (solid black) and experimental
(dashed red) force profiles in space-time (measured in ms) in 1D
woodpile crystals composed of (a) 20 mm and (b) 40 mm rods.
The insets show the numerical magnified force profiles of
nanoptera, while the colormap represents the magnitude of the
contact force.
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contact force profiles obtained by experiments (numerics).
The numerical results are also shown in the underlying
surface maps to ease visualization of wave modulation
effects. In addition to the accurate representation of the
experimental findings by the DEM, we can make a few
further observations here. In the case of 20 mm rods, the
striker rapidly settles into a solitary wave (in a way
reminiscent of the standard granular chain [1,2]—however,
with a significant difference, as we will see below). For the
40 mm case, a traveling breather appears to form in a
pattern similar to numerical observations in Ref. [24]. This
wave emerges after a transient period in which a primary
wave experiences an exponential decay (which can be
computed semianalytically, see the Supplemental Material
[39]) and a secondary wave emerges due to the coupling
with the resonators. However, a key feature shared by both
traveling structures is the existence of a persistent form of
background oscillation as seen in the insets of Fig. 2. We
note that here the wake of the principal pulse has a constant
amplitude tail. This feature, which has also been confirmed
by means of simulations in considerably larger chains (as
illustrated through suitable numerical experiments in the
Supplemental Material [39]), is different from what is
the case in the so-called Kawahara solitary waves, where
the tail is decaying in amplitude away from the main wave
shape [48]. It should also be mentioned that these weakly
nonlocal solitary waves form even in the presence of
dissipation although their features may be attenuated
over time (again, we briefly discuss the relevant features
in the Supplemental Material [39]). We now explore this
nanopteronic waveform more quantitatively.
The surface maps in Figs. 3(a) and 3(b) show the

analytical and experimental velocity profiles, respectively,
of the tails of the observed waveforms that appear in a
40 particle chain of 20 mm rods. The traveling waves
spontaneously become nanoptera by developing oscillatory
patterns of velocity, which clearly follow the principal
solitary wave (highlighted in red color). It should be
noted that the velocities involved in the nanopteronic
tails are approximately 3 orders of magnitude smaller than
those of the solitary waves; yet, they can be accurately
measured through the laser Doppler vibrometer. The
frequency and wave number content of the nanopteronic
tail can be obtained by conducting the fast Fourier trans-
form (FFT) in time and space domains [shown in Figs. 3(c)
and 3(d)]. The resonant frequency of the experimental data
shown in Fig. 3(c) is 54.93 kHz, which is found to be
directly connected to the relative motion of the two masses
(the primary and the resonator ones), namely ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κð1þ 1=νÞp

(55.45 kHz according to the DEM). For a
traveling wave of speed c, the corresponding wave number
in Fig. 3(d) is found to satisfy the relation ω0 ¼ ck0. In
Fig. 3(d), we obtain k0 ¼ 119 m−1 experimentally, which
is in agreement with the value k0 ¼ 120 m−1 obtained via
the DEM (see the Supplemental Material for details [39]).

We now theoretically justify this feature, namely the
existence of the relative motion between the primary node
and the resonator, in the nanopteronic tail of the observed
wave structure. Setting up the so-called strains of the two
fields ri ¼ ui−1 − ui and si ¼ vi−1 − vi, seeking traveling
waves therein as riðtÞ¼Rði−ctÞ¼RðξÞ, si ¼ Sði − ctÞ ¼
SðξÞ, and then assuming that the Fourier transform RðξÞ ¼R∞
−∞ R̂ðkÞeikξdk (and similarly for S) can be applied, leads
from Eqs. (1) and (2) to

R̂ ¼ 1

c2
sinc2

�
k
2

�dR3=2 þ κ

k2c2
ðR̂ − ŜÞ; ð3Þ

Ŝ ¼ κ

κ − c2k2ν
R̂: ð4Þ

Substituting Eq. (4) into Eq. (3) and reshaping the relevant
expression yields

R̂ ¼
�
1

c2
sinc2

�
k
2

�
þ 1

c4
κ

k2 − k20
sinc2

�
k
2

��
ˆR3=2: ð5Þ

Recall that sinc ðxÞ ¼ sinðxÞ=x. Invoking the convolution
theorem leads us to write

RðxÞ ¼ K � R3=2 ¼
Z

∞

−∞
Kðx − yÞR3=2ðyÞdy; ð6Þ

where KðxÞ ¼ ΛðxÞ þ MðxÞ, where ΛðxÞ ¼
ð1=c2Þmaxð1 − jxj; 0Þ and appears in the corresponding

FIG. 3 (color online). (a) Numerical and (b) experimental
velocity profiles of nanoptera formed in a 40 particle chain of
20 mm rods. (c) Frequency and (d) wave number contents of the
tail constructed by the FFT of velocity profiles in specific time
and space domains, respectively (particle spot i ¼ 24 and
time t ¼ 0.4 ms).
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calculation for the granular chain without internal reso-
nators [19]. For MðxÞ we find

ð2c4k30=κÞMðxÞ ¼ j1 − xj½sinc(k0ð1 − xÞ) − k0�
− 2jxj½sincðk0xÞ − k0�
þ jxþ 1j½sinc(k0ðxþ 1Þ) − k0�: ð7Þ

Thus, the sinusoidal dependence with the periodicity
dictated by k0 within MðxÞ is directly responsible for
the formation of the nanopteronic tails, cf. also the
resonant term in the Fourier space expression of
Eq. (5). In the granular chain without the resonators, the
presence of solely the Λ term in Eq. (5) produces a
monotonically decaying solitary wave according to a
double exponential law [19,21]. Here, the presence of
the sinusoidal terms within MðxÞ justifies the form of the
nanopteron, where the localized central wave is supported
against the backdrop of linear relative vibrations between
each node and its corresponding resonator.
Finally, it should be noted that the present setup provides

numerous additional opportunities for a wide range of
studies within this class of models. One such study consists
of modifying the rod length. For example, the experimental
and numerical results for 80 mm rods are shown in Fig. 4.
In this case, the DEM needs to account for two internal
resonant modes within the rod and hence two resonators
(vi, wi) are attached to each principal node of the chain (ui).
As a result, we observe that in this case, the large-amplitude
striker impact drastically decays through an effective
excitation of the internal resonant modes, which disperse
the energy in both the temporal and the spatial domain. The
inset of Fig. 4 depicts the overlapped profiles of nonlinear
waves obtained from various particle positions, which
evidently indicate the decaying trend of the propagating
waves due to the coupling to the resonators. This wave
attenuation suggests that the woodpile periodic structure
could be used as an efficient impact mitigator without
relying on damping in the system. We should note here that

although in this exposition we have highlighted some of the
salient features of the model, numerous additional details
including the quantitative nature of the agreement between
theory, numerics, and experiment are provided in the
Supplemental Material (see, e.g., Fig. 8 therein) [39].
Conclusions and future challenges.—In the present

work, we have offered a prototypical example of a wood-
pile granular crystal, consisting of a chain of orthogonally
stacked cylindrical rods. In addition to developing the
experimental techniques enabling a distributed space-time
sensing of the chain, we have provided a theoretical
discrete element model that captures the fundamental
experimental characteristics of the system, while general-
izing the standard Hertzian chain via the inclusion of at
least one or modularly more internal mode resonators. We
have seen that this inclusion provides the possibility for a
potential breathing traveling wave or even decay of the
initial strong impulse. More importantly, the relative
motion between each node and its corresponding resonator
provides the linear mode, which constitutes the background
for the formation of a weakly nonlocal solitary wave, i.e., a
nanopteron. Despite the small magnitude of the tails of the
nanoptera (differing by 3 orders of magnitude with respect
to the principal wave), we were able to experimentally
observe and compute these tails and to theoretically
account for the wave number or frequency of their
periodicity.
This study leads to a number of topics for potential future

work. From a rigorous mathematical perspective, proving
the existence of the nanopteron provides a novel set of
challenges. At the discrete element model level, quantify-
ing the properties of the system in the case of one or more
resonators by detailing the interplay between principal and
secondary waves or the role of parametric variations (such
as tuning the resonant frequency of the coupling between
unit cells, etc.) would be of particular interest. It is also
relevant to point out that our numerically or experimentally
observed nanoptera have a tail only on one side (i.e., are
“one-sided” nanoptera), while the typical examples pre-
viously known have tails on both sides. Understanding
when one-sided versus two-sided installments of such
coherent structures may arise could be of particular interest
for future work. In the same vein, considering the results of
collisions of two such (e.g., counterpropagating) waves
could also shed light on the robustness of such one-sided
nanoptera, as well as potentially lead to the formation of
two-sided variants thereof. Finally, several questions nat-
urally emerge in experimental investigations. These include
examining the problem in the presence of precompression
and its generalization to higher dimensional settings. From
a practical perspective, this woodpile structure can offer a
new way to modulate, localize, or mitigate external impacts
for engineering devices and associated applications.
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FIG. 4 (color online). Experimental and numerical space-time
wave modulation results in woodpile crystals composed of
80 mm rods.
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