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Cd3As2 is a candidate three-dimensional Dirac semimetal which has exceedingly high mobility and
nonsaturating linear magnetoresistance that may be relevant for future practical applications. We report
magnetotransport and tunnel diode oscillation measurements on Cd3As2, in magnetic fields up to 65 T and
temperatures between 1.5 and 300 K. We find that the nonsaturating linear magnetoresistance persists up to
65 T and it is likely caused by disorder effects, as it scales with the high mobility rather than directly linked
to Fermi surface changes even when approaching the quantum limit. From the observed quantum
oscillations, we determine the bulk three-dimensional Fermi surface having signatures of Dirac behavior
with a nontrivial Berry phase shift, very light effective quasiparticle masses, and clear deviations from the
band-structure predictions. In very high fields we also detect signatures of large Zeeman spin splitting
(g ∼ 16).
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A three-dimensional (3D) Dirac semimetal is a three-
dimensional analogue of graphene, where the valence and
conduction bands touch at discrete points in reciprocal
space with a linear dispersion. These special points are
protected from gap formation by crystal symmetry, and
such a topologically nontrivial band structure may harbor
unusual electronic states. A Dirac semimetal may be tuned
to attain a Weyl semimetal phase through breaking of
inversion or time reversal symmetry [1]. Alternatively, if
the symmetry protection from gapping is removed, a three-
dimensional topological insulator could be stabilized on the
surface [1]. Three-dimensional Dirac semimetals are rare,
and an opportunity to realize such a state in Cd3As2 has
generated a lot of interest. Surface probes, such as ARPES
and STM [2–5], found that the linear dispersion extends up
to high energy 200–500 meV, strongly dependent on the
cleavage directions [6]. Furthermore, the large nonsaturat-
ing linear magnetoresistance (MR) found in Cd3As2 [7,8]
in high-mobility samples was assigned to the lifting of
protection against backscattering caused by possible field-
induced Fermi surface changes [7,8].
In this Letter, we report a magnetotransport study in high

magnetic fields up to 65 T of n-doped Cd3As2 approaching
the quantum limit that reveal no discernible Fermi surface
change except those caused by the large Zeeman splitting.
We observe Shubnikov–de Haas (SdH) quantum oscilla-
tions that allow us to characterize the three-dimensional
Fermi surface and its relevant parameters. The observed
linear MR in ultrahigh magnetic fields and the values of the
linear magnetoresistance are closely linked to the mobility

field scale. This suggests that the unconventional, non-
saturating, large, and linear magnetoresistance in our
electron-doped crystals of Cd3As2 is likely to originate
from mobility fluctuations caused by As vacancies. We also
discuss the deviations of experiments from the standard
density functional theory calculations.
Methods.—Crystals of Cd3As2 were grown by both solid

state reaction and solution growth from a Cd-rich melt due
to its very narrow growth window [9,10]. X-ray diffraction
shows that our single crystals of Cd3As2 crystallize in the
tetragonal symmetry group I41=acdwith lattice parameters
a ¼ 12.6595ð6Þ Å and c ¼ 25.4557ð10Þ Å, cleaving
preferentially in the (112) plane, in agreement with pre-
vious studies [9] (see Supplemental Material [11]). Band-
structure calculations were performed with WIEN2K
including the spin-orbit coupling [12] using the structural
details from Ref. [9]. We have performed magnetotransport
measurements in the standard Hall and resistivity configu-
ration using the ac lock-in technique by changing the
direction of the magnetic field B to extract the symmetric
(ρxx) and the antisymmetric (ρxy) component of the
resistivity tensor, respectively. The transverse magneto-
resistance (I ⊥ B) was measured for different orientations,
θ being the angle between B and the normal to the (122)
plane. Measurements were conducted on three different
batches (a, b, and c), mostly on crystals from batch a (Sa1 ,
Sa2 , etc.) having the lowest carrier concentration.
Measurements were performed at low temperatures
(1.5 K) in steady fields up to 18 T in Oxford and in pulsed
fields up to 65 T at the LNCMI, Toulouse. We also
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measured skin depth in pulsed fields using a tunnel diode
oscillator technique (TDO) by recording the change in
frequency of an LC tank circuit with the sample wound in a
copper coil, reported data being corrected for the magneto-
response of the empty coil.
Figure 1(a) shows the magnetoresistance ΔρxxðBÞ=

ρxxð0Þ as a function of the magnetic field up to 65 T for
sample Sa2 at fixed temperatures between 4 and 300 K. The
MR is linear and unusually large, ∼2000%, and shows a
strong temperature dependence. Both the resistance and the
magnetoresistance change by a factor of 5 from 300 to 4 K
[inset in Fig. 1(a)], and the link between these two
quantities will be discussed in detail later. Figure 1(b)
shows the Hall component ρxy up to 18 T for Sa1 up to 75 K
(raw data also in Ref. [11]). Quantum oscillations are
discernible, on a highly linear background, from as low as
3 T with a characteristic frequency varying for different
samples between 30 and 50 T, shown in Figs. 1(c)–1(e) and
listed in Table I. Spin-splitting effects are evident in very

high magnetic fields approaching the quantum limit
(n ¼ 1) in Fig. 1(c). The field dependence of the resonant
frequency from TDOmeasurements for sample Sc2 is shown
in Fig. 1(d) together with subtracted quantum oscillations.
This frequency variation ΔFTDO tracks the change in
impedance of the coil and is a measure of the skin depth
of the sample, δ ∝ ρ0.5xx .
Quantum oscillations.—The quantum oscillations in

conductivity are given by Δσxx∝ cosf2π½ðF=BÞ− 1
2
þβ�g,

where β is the Berry phase and F is the SdH frequency of
the oscillations, corresponding to an extremal area of the
Fermi surface perpendicular to the magnetic field B.
Figure 2(a) shows the angular dependence of SdH frequen-
cies by rotating away from the (112) plane for different
samples. The SdH frequencies show very little variation as
a function of the orientation in the magnetic field, from 31
to 45 T for sample Sa1 (see also Table I). This behavior is
expected for a three-dimensional elliptical Fermi surface
with a kF vector, extracted from the Osanger relationship
F ¼ ℏπk2F=ð2πeÞ and varying between kF ¼ 0.03 and
0.04 Å−1. These values give a very small carrier concen-
tration of nSdH ¼ 1.0ð2Þ × 1018 cm−3, consistent with that
from Hall measurements nHall¼1.8×1018 cm−3 [extracted
from Rxy in Fig. 1(b) as discussed in Ref. [13]], assuming
two elliptical pockets, as shown in Table I. A Lifshitz
transition as a function of doping occurs from two small
elliptical Fermi surfaces centered at the Dirac node
(kz ∼ 0.15 Å−1 away from Γ) [4] to a larger merged
elliptical Fermi surface centered now at Γ (see [11]).
Band-structure calculations suggest that this transition
should occur very close to the Fermi level (∼10 meV),
whereas in the surface experiments it is not seen up to
300 meV [4,5] [see the inset in Fig. 2(c) and Ref. [11]). This
discrepancy between the band structure and experiments is
rather surprising and requires further understanding.
The temperature dependence of the amplitude of

the quantum oscillations up to 90 K can be used to extract
the values of the effective cyclotron mass meff , using the
standard Lifshitz-Kosevich formalism [14], with the ther-
mal damping term RT ¼ T= sinh ðXÞwithX ¼ 2π2Tmeff=
ℏeB, which also holds for the Dirac spectrum [15,16], as
shown in Fig. 2(b). For parabolic bands, one would expect
meff to be constant as a function of doping, while for Dirac
bands meff ¼ ℏkF=vF. The measured effective mass
extracted for our samples from different batches varies
from 0.023 to 0.043me, increasing with F and the corre-
sponding carrier concentration nSdH, as listed in Table I.
This suggests a deviation from a parabolic band dispersion,
whereas the high-mobility values found in Cd3As2 point
usually towards a linear dispersion. Having samples with
different concentrations, one could attempt to extract the
Fermi velocity vF directly from the slope of 1=meff versus
k−1F , shown in Fig. 2(c), which gives a finite intercept
suggesting a departure from a perfect Dirac behavior
[possibly linked to band-structure effects that show holelike

FIG. 1 (color online). High magnetic field data. (a) Field
dependence of ρxx and the relative change in magnetoresistance,
Δρxx=ρxxð0Þ, for sample Sa2 up to 65 T for temperatures between 4
and 300 K. (b) Field dependence of Hall resistance, Rxy, for
sample Sa1 up to 18 T. (c) The oscillatory part of symmetrized ρxx
for Sa2 approaching the quantum limit. The arrows indicate the
positions of different spin-split Landau levels crossing the Fermi
level. (d) The field dependence of the resonant frequency,ΔFTDO,
of a tunnel diode oscillator for sample Sc2 up to 55 T. The inset
shows the oscillatory part of ΔFTDO. (e) FFT frequencies
corresponding to the oscillatory signal at low temperatures from
(c) for Sa2 and the inset in (d) for Sc2.
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bending towards Γ (see [11])]. The estimation of vF ≈ 4 ×
106 is similar to those extracted from ARPES, vf ∼
0.8–1.5 × 106 m=s [2,4], with deviations caused by orbi-
tally averaged effects (see also Table I). We have also
extracted the values of the g factor from the spin-split
oscillations visible at high fields [see Fig. 1(c)], corre-
sponding to the spin-up and spin-down Landau levels
(�gμBB) that cross the Fermi level and give a large value
of g ∼ 16ð4Þ, consistent with previous reports [17,18].
The Berry phase β can take values of β ¼ 0 for parabolic

dispersion and β ¼ π for a Dirac point [19]. To extract the
Berry phase, we use the conductivity σxx by measuring both
ρxx and ρxy simultaneously (see [11]) and inverting the
resistivity tensor, as shown in the inset in Fig. 2(d). The
direct fit of Δσxx gives a value of β ¼ 0.84ð8Þπ for Sa2, in
agreement with previous reports [20], as shown in Table I.
Another method to extract β is given by the linear intercept
of an index plot of the conductivity minima versus the
inverse magnetic field; for samples Sa1 and Sa2 in the low-
field region (from n ¼ 4), that gives β ¼ 0.8ð1Þπ [solid line
in Fig. 2(d)]. In high magnetic fields, the positions of the
minima are strongly affected by the spin splitting, and a
nonlinear fan diagram analysis detailed in Refs. [19,21]
gives β ¼ 0.9ð1Þπ for Sa2 [dashed line in Fig. 2(d)].
Scattering.—The field dependence of the amplitude of

quantumoscillations at fixed temperatures [inset inFig. 2(b)]
gives access to theDingle temperature,which is ameasure of
the field-dependent dampingof the quantumoscillations due
to impurity scattering. For sample Sa1 the quantum scattering
time given by τq ¼ ℏ=ð2πkBTDÞ corresponds to a quantum
mobility of μq ∼ 6000 cm2=V s and a mean free path lq ¼
vFτq of ∼122ð8Þ nm. These values are in good agreement
with some of the reports for single crystals and thin films, as
shown in Table I. Another way to estimate the mobility is to
apply a simple Drude model to the Hall and resistivity data.
By using the carrier concentration estimated from the Hall
effect nH ¼ 1.8 × 1018 cm−3 and ρxx0 ¼ 42 μΩ cm for
sample Sa1 (shown in Ref. [11]), the classical mobility from
1=ρxx ¼ nHμce is μc ¼ 80000 cm2=Vs, a factor up to 13
larger than the mobility from quantum oscillations, μq. This
difference in the two mobilities is common, as they measure

different scattering processes. The SdH estimated mobility
is affected by all processes that cause the Landau level
broadening—i.e., quantum scattering time τq measures how
long a carrier stays in a momentum eigenstate—whereas the
classical Drude mobility is affected only by scattering

TABLE I. Band parameters extracted from quantum oscillations, such as frequencies for two different orientations (F1 for B∥ [112]
axis and F2 for B ⊥ [112]), Fermi velocities, vF ¼ ℏkF=meff , the Berry phase β, the g factor, the Dingle temperature TD, the mean free
path l, and the quantum mobility μq. The carrier concentration nSdH was estimated by assuming that the Fermi surface is a three-
dimensional ellipsoid. The Hall effect data give the carrier concentration nHall and classical mobilities μc and the mobility ratio μc=μq.
The data are reported for samples from different batches (a, b, and c), and they are compared to published data.

F1

T
F2

T
nSdH

1018 cm−3
nHall

1018 cm−3
meff
me

vF
106 m=s

TD
K

l
nm

μq
m2=V s

μc
m2=Vs μc=μq g β π

Sa1 31(4) 45(4) 1.0(2) 1.8(2) 0.023(4) 1.54(4) 15.4(8) 122(8) 0.60(1) 8.0(5) 13.3(4) 16(4) 0.83(8)
Sb1 42(4) 52(4) 1.5(2) 2.5(2) 0.031(3) 1.33(4) 14.4(8) 112(8) 0.47(1) 3.4(3) 7.1(4) 15(3) 1.08(6)
Sc1 67(4) 74(4) 3.1(2) 3.8(2) 0.043(4) 1.21(4) 9.8(8) 150(8) 0.51(1) 2.9(3) 5.7(4) � � � 0.84(4)
Lit. 20–90 20–90 0.1–8 2–20 0.03–0.08 0.4–12 11–17 � � � 0.1–104 1–103 1–104 2–100 � � �
Refs. [7,23] [23] [7,8] [7,8] [7,23] [2,23] [24] � � � [7,8] [8] [8] [5,17,18] � � �

FIG. 2 (color online). Fermi surface parameters. (a) The angular
dependence of SdH oscillation frequencies away from the (112)
plane. The solid line is the expectation for a two-dimensional
Fermi surface. (b) The temperature dependence of the oscillation
amplitude that gives meff for different samples (Sa1 , S

a
2 , and Sa3).

The inset shows the Dingle plots of the FFT amplitude for
samples from different batches (a, b, and c). (c) Extracting the
Fermi velocity from a linear fit of 1=meff versus

ffiffiffiffiffiffiffiffiffiffiffiffiðπ=FÞp

(in
atomic units, a.u.), as described in the main text (solid line). The
dashed line indicates the expected behavior for a perfect Dirac
system. The inset shows a schematic Fermi surface before and
after the Lifshitz transition. (d) Index plot to extract the Berry
phase for samples Sa1 and Sa2 (as detailed in the text). The inset
shows quantum oscillations in conductivity σxx for Sa2 fitted to the
Lifshitz-Kosevich formula (dashed line) [14] with a phase of
β ¼ 0.84ð8Þ.
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processes that deviate from the current path—i.e., the
classical scattering time (transport time) is a measure of
how long a particle moves along the applied electric field
gradient. Thus, the quantummobility is susceptible to small
angle and large angle scattering, while the transport
(classical) mobility is susceptible only to large angle scatter-
ing.The ratioμc=μq is ameasureof the relative importanceof
small angle scattering; Table I suggests that small angle
scattering dominates in all our samples, in particular, for
lower doping nSdH.
Linear magnetoresistance.—Now we discuss the origin

of the unconventional linear MR in a transverse magnetic
field for two crystals of Cd3As2 [shown initially in Fig. 1(a)]
plotted in Fig. 3(a) on a log-log scale to emphasize the low-
field behavior. We observe that the linear MR behavior is
established above a crossover field BL. Interestingly, we
find that BL and the relative change in magnetoresistance,
MR ¼ ΔρxxðBÞ=ρxxð0Þ, vary with temperature in the same
ratio as the mobility μc and, consequently, the resistivity
ratio (ρ ∼ μ−1c ) [see Fig. 3(b)]. Furthermore, we find that all
MR curves collapse onto a single curve in a Kohler plot
for temperatures below 200 K, suggesting that a single
relevant scattering process is dominant in Cd3As2, as shown
in Fig. 3(c). Small deviations at higher temperatures are

caused by the onset of phonon scattering, consistent with the
Debye temperature of 200 K [22].
The conventional MR shows a quadratic dependence at

low fields and saturation for Fermi surfaces with closed
orbits in high fields, such that μcBL > 1; in our samples the
crossover field can be estimated as BL > 1 T. Linear MR
has been predicted by Abrikosov [25] to occur in the
quantum limit, only beyond the n ¼ 1 Landau level.
However, in our crystals the value of BL is much lower
than the position of the n ¼ 1 level above 32 T.
Another explanation for the presence of linear MR has its

origin in classical disorder models. For example, linear MR
was realized for highly disordered [26,27] or weakly
disordered high-mobility samples [28], thin films, and
quantum Hall systems [29]. The linear MR arises because
the local current density acquires spatial fluctuations in
both magnitude and direction, as a result of the hetero-
geneity or microstructure caused by nonhomogeneous
carrier and mobility distribution [see Fig. 3(d)]. There
are a series of experimental realizations of linear MR in
disordered systems, such as Ag2�δSe and Ag2�δTe [30],
two-dimensional systems (epitaxial graphite) [31,32], In
(As/Sb) [33], LaSb2 [34], and LaAgSb2 [35,36].
Monte Carlo simulations for a system with a few islands

of enhanced scattering embedded in a medium of high
mobility [33] suggest that MR is linked to the generation of
an effective drift velocity perpendicular to cycloid motion
in an applied electric field caused by multiple small angle
scattering of charge carriers by the islands [see Fig. 3(d)].
For such a mechanism the mobility μc is determined by the
island separation, and, depending on the value of ðδμc=μcÞ,
the linear MR emerging from this process will be associated
with BL ∼ μ−1c , which tracks the island separation if
ðδμc=μcÞ < 1 and tracks δμ−1c if ðδμc=μcÞ > 1. Thus, the
absolute value of the linear MR and BL would vary like μ−1c
(linked to ρ values) [Fig. 3(b)]. This scaling is consistent
with the classical disordered model originating from
fluctuating mobilities for the observed linear MR
in Cd3As2.
Last, we comment on the possible source of disorder in

Cd3As2. STM measurements found disordered patches
with a typical size of 10 nm and separated by distances
of 50 nm, attributed to As vacancy clusters [5], likely to
appear during the growth in a Cd-rich environment with a
small width formation for Cd3As2 [9]. Assuming a disorder
density comparable to the carrier concentration, nSdH, and a
dielectric constant of ϵ ¼ 16 (see Ref. [37]), one can
estimate the classical mobility as being 30000 cm2=V s
for Cd3As2, which is similar to our measured classical
mobilities μc. The lower quantum mobility μq corresponds
to small angle scattering when carriers travel over the mean
free path, l ∼ 110–150 nm, which is similar to the dis-
tribution of As vacancy clusters imaged by STM [5] [see
Fig. 3(d)]. Furthermore, a mobility ratio μc=μq > 1 points
towards As vacancies as being the small angle scatterers in

FIG. 3 (color online). Linear MR and mobilities. (a) Log-log
plot of resistance versus field for Sa2 and S

a
1 (inset). The crossover

field BL to the linear MR is indicated by arrows. (b) The
temperature dependence of ratios of mobility, ρ ∼ μ−1c (solid
lines), BL (squares) normalized to the 4 K values, and the change
in MR (triangles) show the same temperature dependence.
(c) Kohler’s plots for Sa2 showing the collapse of all magneto-
resistance curves into one curve (below the Debye temperature
200 K [22]). (d) Schematic diagram of scattering processes in
Cd3As2.
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Cd3As2 [38]. Concerning the possible changes of the Fermi
surface induced by a magnetic field in Cd3As2, our data that
approach the quantum limit [for sample Sa1 in Fig. 1(c)], we
find no evidence of additional frequencies (only spin
splitting due to the large g factors) or changes in scattering
(Dingle term) up to 65 T.
In conclusion, we have used ultrahigh magnetic fields to

characterize the Fermi surface of Cd3As2 and to understand
the origin of its linear magnetoresistance. The Fermi
surface of Cd3As2 has an elliptical shape with a nontrivial
Berry phase. We find that the linear MR enhancement
scales with mobility in Cd3As2 and likely originates from
fluctuating mobility regions that caused inhomogeneous
current paths. Close to the quantum limit we find no
evidence for Fermi surface reconstruction except the
observed spin-splitting effects caused by the large g factors.
The large and growth sample-dependent linear MR suggest
a possible avenue for tuning sample quality and further
enhancing its MR for useful practical devices.
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