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Recently, there has been much effort in understanding topological phases of matter with gapless bulk
excitations, which are characterized by topological invariants and protected intrinsic boundary states.
Here we show that topological semimetals of Majorana fermions arise in exactly solvable Kitaev spin
models on a series of three-dimensional lattices. The ground states of these models are quantum spin liquids
with gapless nodal spectra of bulk Majorana fermion excitations. It is shown that these phases are
topologically stable as long as certain discrete symmetries are protected. The corresponding topological
indices and the gapless boundary states are explicitly computed to support these results. In contrast to
previous studies of noninteracting systems, the phases discussed in this work are novel examples of gapless
topological phases in interacting spin systems.
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Theoretical prediction and experimental realization of
topological insulators (TIs) [1–3] pushes our understanding
of topological phenomena in condensed matter physics to a
new level. Recently, it was revealed that analogs of TIs exist
in a large class of interacting boson and spin systems,
dubbed “symmetry protected topological phases” [4,5].
These topological phases are analogs of one another due to
the existence of gapless surface states protected by sym-
metries, in spite of an energy gap for bulk excitations.
Similar to TIs, a rich topology also exists in semimetals of
weakly interacting electrons featuring protected boundary
excitations [6,7], such as Weyl semimetals with surface
Fermi arcs [8]. This raises a natural question: Are there
analogs of topological semimetals in interacting boson or
spin systems which harbor both gapless bulk excitations
and protected surface states? Here we provide a positive
answer to this question, in the ground states of the Kitaev
model [9] on a series of three-dimensional trivalent lattices.
Motivated by recent discovery of the hyperhoneycomb

(H − 0) and harmonic honeycomb (H − 1) iridates [10,11],
the Kitaev model on these lattices has been examined
[12–15], and gapless Z2 spin liquids with one-dimensional
spinon nodal rings were found to be plausible ground states
of these models [12–14]. In addition, a three-dimensional
Z2 spin liquid with a two-dimensional Fermi surface was
explored on the hyperoctagon lattice [16]. In this work, we
show that the Majorana spinon nodal rings in the bulk of the
gapless spin liquids on the H − n lattices are topologically
stable. Moreover, due to the bulk-boundary correspondence
[17], these spin liquids exhibit protected gapless surface
states in the form of dispersionless zero-energy flat bands.
Solution to the Kitaev model.—We first examine the bulk

properties of the ground states on these lattices. Given a

particular choice of the vectors x̂, ŷ, and ẑ (see Fig. 1), we
define x, y, and z bonds as those which are perpendicular
to the associated directions. With this definition, each
site shares one bond of each type with one of its three

FIG. 1 (color online). Unit cell, lattice vectors, sublattices, and
coordinate systems for theH − 0 andH − 1 lattices. The conven-
tional (orthorhombic) unit cells are drawn, while the sublattices in
the primitive unit cells are labeled from 1 to 4nþ 4. The x, y, and z
bonds within the conventional unit cell as defined in the Kitaev
model are colored in orange, blue, and turquoise, respectively.

PRL 114, 116803 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

0031-9007=15=114(11)=116803(5) 116803-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.116803
http://dx.doi.org/10.1103/PhysRevLett.114.116803
http://dx.doi.org/10.1103/PhysRevLett.114.116803
http://dx.doi.org/10.1103/PhysRevLett.114.116803


neighbors. As such, we define the Kitaev Hamiltonian on
these lattices as

H ¼
X
hiji∈α

JαSα
i S

α
j ; ð1Þ

where α denotes the bond type of bond ij and the sum runs
over nearest-neighbor bonds. We take Jα to be the same
over all bonds of type α and Jx ¼ Jy for simplicity, which
preserves the crystal symmetries of the lattices.
This model can be solved exactly by introducing four

Majorana spinons fbx; by; bz; cg at each site and replacing
Sα
i ¼ ibαi ci [9]. The operators uij ¼ ibαi b

α
j ¼ −uji (where

ij is an α bond) commute with one another and the
Hamiltonian; thus, they define conserved quantities that
take on the values of �1 on each bond. These uij are not
gauge invariant. However, products of these operators over
closed loops, which correspond to fluxes of the Z2 gauge
field, are gauge invariant [9]. By choosing a configuration
of fuijg, the fluxes are fully determined and the
Hamiltonian becomes quadratic in terms of the c fermions.
The ground state can be found by solving the quadratic
Hamiltonians corresponding to all possible flux configu-
rations (or flux sectors) and identifying the flux sector that
yields the lowest energy state. Other flux sectors are
important when considering the high-energy excitations
and dynamic properties of the model [18,19]; however, we
will limit our focus to the ground state properties of these
models.
Unlike the 2D honeycomb lattice, both the hyperhoney-

comb (i.e.,H − 0) andH − 1 lattices possess loops without
mirror symmetries. As such, Lieb’s theorem [20] cannot
determine the flux passing through these loops in the
ground state. We performed a brute-force search through-
out all flux sectors compatible with an eightfold enlarged
unit cell, and the results suggest that the ground state on the
hyperhoneycomb lattice belongs to the zero-flux sector,
which agrees with previous work [12]. In contrast, on the
H − 1 lattice, we find that the ground state flux sector
differs for different values of δ ¼ Jz=Jx. At the isotropic
point δ ¼ 1, a particular flux configuration with π flux
passing through a subset of the loops appears to be the
ground state flux sector (hereafter, we label it as the “π-flux
sector”). Upon increasing δ, the zero-flux sector becomes
energetically favorable. We will first focus on the zero-flux
sectors on the hyperhoneycomb and H − 1 lattices and
defer the more involved analysis of the π-flux sector on the
H − 1 lattice for later.
Bulk Majorana spectrum in the zero-flux sector.—

Because of the bipartite nature of both the hyperhoney-
comb andH − 1 lattices, the Hamiltonian in any flux sector
takes the off-diagonal form

HΦ
n ¼

X
k

~cn;−kTHΦ
n;k~cn;k; ð2Þ

HΦ
n;k ¼

�
0 −iDΦ

n;k

iðDΦ
n;kÞ† 0

�
; ð3Þ

where n refers to the nth-harmonic honeycomb, Φ labels
the flux sector, and ~cn;k is the vector of the Fourier
transforms of the c Majorana fermions ordered by the
odd sublattices followed by the even sublattices (see
Supplemental Material [21] for the definition of lattice
vectors, unit cell, and sublattice conventions). In the zero-
flux sector, we can choose the gauge where uij ¼ 1 when i
is an even sublattice and j is an odd sublattice.
Consequently, the D0 matrices for the hyperhoneycomb
and H − 1 lattices are

D0
0;k ¼

�
Jz Akeik3

Bk Jz

�
; D0

1;k ¼

2
6664

Jz 0 0 Akeik3

A�
k Jz 0 0

0 Bk Jz 0

0 0 B�
k Jz

3
7775;

ð4Þ

where Ak ¼ Jxð1þe−ik1Þ, Bk¼Jxð1þe−ik2Þ with ki¼~k ·~ai,
and ~ai are the lattice vectors.
Each of the zero-flux sectors of both hyperhoneycomb

and H − 1 lattices possesses gapless spinon excitations in
the bulk that form a nodal ring in the 3D Brillouin zone
(BZ). The off-diagonal block form of HΦ

n ensures that the
zero modes ofHΦ

n are determined by detðDΦ
n;kÞ ¼ 0. For the

zero-flux phase of the hyperhoneycomb andH − 1 lattices,
these conditions are

H − 0∶ 4 cos
k1
2
cos

k2
2
¼ δ2e−i½k3−ðk1=2Þ−ðk2=2Þ�; ð5Þ

H − 1∶
����4 cos k12 cos

k2
2

���� ¼ δ2e−ik3 : ð6Þ

For values of δ < 2, a continuous set of solutions exist for
each of Eqs. (5) and (6), which defines the nodal ring.
We have illustrated the locations of the nodal rings for the
isotropic case δ ¼ 1 in Figs. 2(a) and 2(b).
Topological invariants of the nodal ring.—The nodal

rings present in the zero-flux sectors of the hyperhoney-
comb and H − 1 models are topologically stable. To see
this, we first define the time-reversal (TR) and particle-hole
(PH) symmetry operators, whose unitary components
satisfy the following relations:

Hk ¼ ϵUUHT
−kU

−1; UU† ¼ I; UT ¼ ηUU; ð7Þ

where Hk is the Hamiltonian matrix, T is the matrix
transpose, I is the identity matrix, U ¼ T; P for TR and
PH, respectively, ϵU ¼ �1 for TR and PH, and ηU ¼ �1.
The presence of both TR and PH ensures that S ¼ TP is a
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chiral (or sublattice) symmetry of the system, which
satisfies fS;HΦ

n g ¼ 0 (where boldface letters denote
operators).
In the case of the hyperhoneycomb and H − 1 lattices,

we find for the zero-flux sector

T0
n ¼ S0n ¼ σz ⊗ I2nþ2; P0

n ¼ I4nþ4; ð8Þ

where σ are the Pauli matrices, ⊗ is the tensor product of
matrices, and Im is the m ×m identity matrix. In both
systems, ηT ¼ ηP ¼ þ1, which implies thatH0

n;k belongs to
symmetry class BDI based on the classification of topo-
logically stable Fermi surfaces (FSs) [17,22]. The topo-
logical stability of a nodal ring in three-dimensional
systems of class BDI is characterized by the following
integer-valued topological invariant (winding number):

ν ¼ 1

4πi

I
dkTr½D−1

k ∂kDk − ðD†Þ−1k ∂kD
†
k�; ð9Þ

where the integral is taken along a path around the
nodal ring.
We can deform the path into two pieces: one passing

through the inside of the nodal ring and one outside.
Integrating Eq. (9) in the k3 direction along the lines k1 ¼
k2 ¼ 0 (inside the nodal ring) and k1 ¼ k2 ¼ π (outside the
nodal ring), we find a nontrivial winding number ν ¼ 1
inside the nodal ring but a trivial one (ν ¼ 0) outside (see
Supplemental Material [21] for details). As a result, the
nodal ring is characterized by a topological index ν ¼ �1
and is hence topologically stable.
Surface spectra.—The surface spectra of the hyper-

honeycomb and H − 1 lattices is expected to possess
zero-energy flat bands due to the bulk-boundary corre-
spondence [17], as long as the bulk nodal ring has finite
projection in the surface BZ. At the momenta correspond-
ing to the projection of the nodal ring on a surface, the
change in the number of flat bands must be the same as the
topological index ν of the ring.
For the hyperhoneycomb lattice, we examine the

spectra associated with the (100) and (001) surfaces in

FIG. 2 (color online). Position of nodal rings, surface spectra, and winding numbers. In (a)–(c), the red lines show the location of the
nodal rings of the indicated lattice, flux sector, and δ ¼ Jz=Jx. The red lines are the intersections of the yellow and turquoise surfaces,
which are the LHS ¼ 1 and RHS ¼ 1 of Eqs. (5), (6), and (11). In (c), the first Brillouin zone spans the region −π=2 < k1 ≤ π=2 due to
doubling of the unit cell in the π-flux sector. (d)–(h) show the surface spectra along one-dimensional momentum cuts on the various
lattices and flux sectors, while the insets within indicate the location of the momentum cuts and projection of the nodal ring on the
surfaces indicated. The colors in the insets correspond to the winding numbers, where yellow, turquoise, and red are ν ¼ 0,�1, and�2,
respectively. When ν ≠ 0, as shown in (d)–(h), we find the presence of zero-energy surface flat bands with jνj-fold degeneracy, due to the
bulk-boundary correspondence.
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Figs. 2(d) and 2(e) [the surface (010) is related to the (100)
surface by a glide plane symmetry; hence, it is not shown].
Since the nodal ring has finite projection along k1 and k3,
flat bands at zero energy are expected in both surface
spectra. Indeed, we see ν ¼ 1 within the area enclosed by
the projection of the nodal ring. Plotting the surface spectra
along momentum paths that cut through the nodal ring
projections, we see the presence of flat bands where the
winding number is �1. In contrast, the nodal ring in the
H − 1 lattice only has finite projection along the k3
direction. Therefore, only the (001) surface spectrum
possesses zero-energy flat bands, which can be seen in
Fig. 2(f).
Analysis of the π-flux sector.—The above analysis can be

performed analogously in the π-flux sector on the H − 1
lattice; here we summarize the main results. The descrip-
tion of the π-flux sector requires doubling of the unit cell in
the a1 direction (see Supplemental Material [21] for a
definition of the enlarged unit cell andDπ

1;k). Because of the
enlarged unit cell, the TR, PH, and chiral symmetry
operators are now given by

Tπ
n ¼ Sπn ¼ σz ⊗ I4nþ4; Pπ

n ¼ I8nþ8 ð10Þ

with n ¼ 1. Since ηT ¼ ηP ¼ þ1, Hπ
k still belongs to class

BDI and its nodal rings are associated with Z-valued
topological invariants.
When 0 < δ < 23=4, the bulk spectrum possesses two

nodal rings that satisfy

16sin2k1sin2k2 ¼ 8e−ik3δ4 − e−2ik3δ8; ð11Þ

where −ðπ=2Þ ≤ k1 < ðπ=2Þ due to the doubling of the unit
cell. The parameter point δ0 ≡ ffiffiffi

2
p

is unique: Upon increas-
ing δ towards this value, the two nodal rings shrink towards
k0� ¼ ½ðπ=2Þ;�ðπ=2Þ; 0�. At δ0, the nodal rings turn into
Dirac points at k0�. Upon further increasing δ beyond δ

0, the
nodal rings return and expand. For δ < δ0, ν ¼ �2 inside
the nodal rings and ν ¼ �1 outside the nodal rings. On the
other hand, when δ0 < δ < 23=4, ν inside the nodal rings
decreases to 0, while ν remains as �1 outside the nodal
rings. The surface spectra of these cases are illustrated in
Figs. 2(g) and 2(h).
Generalization to the H − n lattice.—The above results

for the zero-flux sector can be straightforwardly extended
to all the H − n lattices [11]. In fact, many of the results
remain the same: The position of the nodal ring for even-n
lattices is given by Eq. (5), while for the odd-n lattices it is
given by Eq. (6). The operators T0

n, P0
n, and S0n are still

defined by Eq. (8), where n is now arbitrary; therefore, the
whole family of H0

n;k belongs to class BDI. For the
calculation of the winding number, we have

Tr½D−1
n;k3

∂k3Dn;k3 � ¼
−ieik3

ðδ=2Þ2nþ2 − eik3
ð12Þ

along the line k1 ¼ k2 ¼ 0 for all the H − n lattices. In
addition, D0

n;k is constant along k3 when k1 ¼ k2 ¼ π.
Hence, the winding number is always 1 and 0 inside and
outside the nodal ring, respectively.
For the π-flux sector, the TR, PH, and chiral symmetry

operators are still defined by Eq. (10) for arbitrary n, and
the spinon Hamiltonian Hπ

n;k belongs to the BDI class.
Other aspects of the Hamiltonian are less generalizable,
however. The zero modes of the bulk Hamiltonian do not
follow a generalized form; however, we have numerically
verified that two nodal rings are present for n < 15. The
point δ ¼ δ0 remains as a special point where the two nodal
rings collapse to two points. Like the H − 1 model, for
δ < δ0, ν ¼ 2 (1) inside (outside) the nodal rings, while for
δ > δ0 within the gapless phase, ν ¼ 0 (1) inside (outside)
the nodal rings. Therefore, the spinon nodal rings in the
bulk and surface flat bands are topologically protected.
Summary and discussion.—A nearest-neighbor tight-

binding Hamiltonian of spinless electrons hopping on a
H − n lattice will have the same band structure as the zero-
flux sector. With PH, chiral, and charge conservation
symmetry, it also belongs to symmetry class BDI, with
the unitary component of the time-reversal and particle-
hole symmetry operators exchanged with respect to the
Kitaev spin liquid. This means a half-filled electron system
on theH − n lattice can also host topologically stable nodal
rings in the bulk and symmetry-protected flat bands on the
surface.
Although this work focuses on the hyperhoneycomb and

H − n lattices, our analysis applies to Kitaev models on any
bipartite and trivalent lattice. Generally, the spinon band
structure of any bipartite-lattice Kitaev model belongs to
symmetry class BDI, whose Hamiltonian has the form of
Eq. (2) independent of the flux sector. Since the Majorana
spinon FSs are determined by two real equations

Re½detðDkÞ� ¼ Im½detðDkÞ� ¼ 0; ð13Þ

a d-dimensional lattice will generically give ðd − 2Þ-
dimensional spinon FSs [16]. Similar to nodal rings in
three-dimensional lattices, each ðd − 2Þ-dimensional FS in
the d-dimensional BZ is classified by an integer-valued
topological invariant ν for symmetry class BDI. A nonzero
ν will imply the stability of the spinon FS and protected
surface flat bands.
A simple example is the original Kitaev model on the

honeycomb lattice [9]. Majorana spinons in the gapless Z2

spin liquid ground state have a graphenelike band structure,
with a pair of topologically stable point nodes with ν ¼ �1.
This leads to localized spinon flat bands on the boundaries.
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An exception occurs when the surfaces defined by the
two constraints in Eq. (13) coincide, such as the case of the
hyperoctagon lattice [16] where a 2D FS of Majorana
spinons arises. The FS is characterized by a Z2 topological
index of class BDI, and there are no surface flat bands
associated with it [17].
Near the isotropic limit of theH − n models, we find the

presence of nodal rings. Through numerical and analytical
calculations, we find that the winding numbers around
these rings are �1 in all cases that we examined. As
required by the bulk-boundary correspondence, we find
surface flat bands protected by the present symmetries.
In the strongly anisotropic limit, the nodal rings dis-

appear and the ground states of the H − n models become
gapped quantum spin liquids. These gapped phases also
have a nontrivial topology, characterized by 1D weak
indices [23] of symmetry class BDI. The physical conse-
quence of this weak index is that the surface flat bands of
Majorana spinons will persist even when we enter the
gapped phase, as long as translation symmetry is preserved
[24,25]. Once we break TR and hence chiral symmetry
(leading to symmetry classD), the surface flat bands gain a
dispersion and the bulk line node can gain a gap.
While this Letter focuses on the properties of the model

in the ground state, we expect the results to extend to small
finite temperatures [15]. A gap exists to flux excitations in
the model, resulting in the number of such excitations being
exponentially suppressed in the low-temperature limit. As
such, the band structure of the spinon excitations is robust
for small T, and the flat surface band structure should be
detectable experimentally in such a system. Comparing the
results of thermal transport measurements taken across
different surfaces allows one to identify the presence of
such surface modes, as these are absent on surfaces
perpendicular to the bulk nodal ring. In addition, due to
the divergence in the density of states on the surface at zero
energy, we expect the surface contribution to the specific
heat will dominate the T2 bulk signal at sufficiently low
temperatures [26]. By tuning the aspect ratio between the
surface with flat bands and the other surfaces (and the
bulk), one may be able to isolate this contribution,
providing strong evidence of the presence of these topo-
logical surface bands.
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