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We describe an efficient numerical approach to calculate the longitudinal and transverse Kubo
conductivities of large systems using Bastin’s formulation. We expand the Green’s functions in terms
of Chebyshev polynomials and compute the conductivity tensor for any temperature and chemical potential
in a single step. To illustrate the power and generality of the approach, we calculate the conductivity tensor
for the quantum Hall effect in disordered graphene and analyze the effect of the disorder in a Chern
insulator in Haldane’s model on a honeycomb lattice.

DOI: 10.1103/PhysRevLett.114.116602 PACS numbers: 72.15.Rn, 71.23.An, 71.30.+h

One of the most important experimental probes in
condensed matter physics is the electrical response to an
external electrical field. In addition to the longitudinal
conductivity, in specific circumstances, a system can
present a transverse conductivity under an electrical per-
turbation. The Hall effect [1,2] and the anomalous Hall
effect in magnetic materials [3] are two examples of this
type of response. Paramagnetic materials with spin-orbit
interaction can also present transverse spin currents [4].
There are also the quantized versions of the three phenom-
ena: while the quantum Hall effect (QHE) was observed
more than 30 years ago [5], the quantum spin Hall effect
(QSHE) and the quantum anomalous Hall effect (QAHE)
could only be observed [6,7] with the recent discovery of
topological insulators, a new class of quantum matter [8].
In the linear response regime, the conductivity tensor can

be calculated using the Kubo formalism [9]. The Hall
conductivity can be easily obtained in momentum space in
terms of the Berry curvature associated with the bands [10].
The downside of working in momentum space, however, is
that the robustness of a topological state in the presence of
disorder can only be calculated perturbatively [11]. Real-
space implementations of the Kubo formalism for the Hall
conductivity, on the other hand, allow the incorporation of
different types of disorder in varying degrees, while
providing flexibility to treat different geometries. Real-
space techniques, however, normally require a large com-
putational effort. This has generally restricted their use to
either small systems at any temperature [12,13], or large
systems at zero temperature [14].
In this Letter, we propose a new efficient numerical

approach to calculate the conductivity tensor in solids. We
use a real space implementation of the Kubo formalism
where both diagonal and off-diagonal conductivities are
treated in the same footing. We adopt a formulation of the
Kubo theory that is known as the Bastin formula [1] and
expand the Green’s functions involved in terms of
Chebyshev polynomials using the kernel polynomial

method [15]. There are few numerical methods that use
Chebyshev expansions to calculate the longitudinal dc
conductivity [16–19] and transverse conductivity [14,20]
at zero temperature. One advantage of our approach is the
possibility of obtaining both conductivities for large sys-
tems in a single calculation step, independently of the
temperature, chemical potential and for any amount of
disorder.
We apply this method to two different systems display-

ing topological states in a honeycomb lattice. The first one
has been extensively explored in the literature [14,21–23],
and consists of disordered graphene under constant
perpendicular magnetic field. Our calculation of the longi-
tudinal and Hall conductivities serve to illustrate the key
aspects of our approach. We then apply the method to a
Chern insulator (CI) in Haldane’s model on a honeycomb
lattice [24]. This model produces an insulating state with
broken time-reversal symmetry in the absence of a macro-
scopic magnetic field. Instead of behaving as a normal
insulator, it exhibits a quantized Hall conductivity σxy ¼
e2=h in the gapped state. If the inversion symmetry is
broken, the system can undergo a topological phase
transition to a normal insulator. We investigate the transport
properties of Chern insulators and analyze how they are
affected by the interplay between disorder and inversion
symmetry breaking.
The conductivity tensor can be calculated using the

Kubo formula from linear response theory. In the limit
ω → 0, the elements of the static conductivity tensor for
noninteracting electrons are given by the Kubo-Bastin
formula for the conductivity [1]

~σαβðμ; TÞ ¼
ie2ℏ
Ω

Z
∞

−∞
dεfðεÞ

× Tr

�
vαδðε−HÞvβ

dGþðεÞ
dε

− vα
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�
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where Ω is the volume, vα is the α component of the
velocity operator, G�ðε; HÞ ¼ 1=ε −H � i0 are the
advanced (þ) and retarded (−) Green’s functions, and
fðεÞ is the Fermi-Dirac distribution for a given temperature
T and chemical potential μ. The expression above was first
obtained by Bastin and collaborators in 1971 [1] and later
generalized for any independent electron approximation
[25]. However, it has not been used often in numerical
calculations because of the complications of dealing with
an integration in energy. Instead, it is possible to perform
analytical integrations by parts [25] to obtain a more
treatable expression for the static conductivity at zero
temperature, which became known as the Kubo-Streda
formula [26]. For the diagonal elements of the conductivity
tensor (α ¼ β), the integration leads to the Kubo-
Greenwood formula [27].
Here we propose a new approach to compute, for any

finite temperature, both diagonal and off-diagonal con-
ductivities using the Kubo-Bastin formula. Our method
consists of expanding the Green’s functions in the integrand
of Eq. (1) in terms of Chebyshev polynomials using the
kernel polynomial method [15,28], a highly efficient and
scalable way to calculate the Green’s functions in electronic
systems [15,29–31]. For that purpose, we first need to
rescale the Hamiltonian so that the upper Eþ and lower E−

bounds of the spectrum are mapped into 1 and-1, respec-
tively. To estimate the bounds, we apply the power method
[32], which is normally used to locate dominant eigenval-
ues in linear algebra. The rescaled Hamiltonian and energy
are represented by ~H and ~ε [33] and we can expand the
rescaled delta and Green’s functions by considering their
spectral representations and expanding their eigenvalues in
terms of the Chebyshev polynomials:

δð~ε − ~HÞ ¼ 2

π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~ε2

p
XM
m¼0

gm
Tmð~εÞ
δm;0 þ 1

Tmð ~HÞ; ð2Þ

G�ð~ε; ~HÞ ¼ ∓ 2iffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~ε2

p
XM
m¼0

gm
e�im arccosð~εÞ

δm;0 þ 1
Tmð ~HÞ: ð3Þ

where TmðxÞ ¼ cos½m arccosðxÞ� is the Chebyshev poly-
nomial of the first kind and order m, which is defined
according to the recurrence relation TmðxÞ ¼ 2xTm−1ðxÞ−
Tm−2ðxÞ. The expansion has a finite number of terms (M)
and the truncation gives rise to Gibbs oscillations that can
be smoothed with the use of a kernel, given by gm [15,28].
Replacing the expansions above in (1) with ΔE ¼

Eþ − E−, we obtain

σαβðμ; TÞ ¼
4e2ℏ
πΩ

4

ΔE2

Z
1

−1
d~ε

fð~εÞ
ð1 − ~ε2Þ2

X
m;n

Γnmð~εÞμαβnm; ð4Þ

where μαβmn ≡ ½gmgn=ð1 þ δn0Þð1 þ δm0Þ�Tr½vαTmð ~HÞ×
vβTnð ~HÞ� does not depend on the energy. Since μmn

involves products of polynomial expansions of the
Hamiltonian, its calculation is responsible for most of
the method’s computational cost.
On the other hand, Γmnð~εÞ is a scalar that is energy

dependent but independent of the Hamiltonian

Γmnð~εÞ≡ ½ð~ε − in
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~ε2

p
Þein arccosð~εÞTmð~εÞ

þ ð~εþ im
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~ε2

p
Þe−im arccosð~εÞTnð~εÞ�: ð5Þ

As shown in (4), once the coefficients μmn are determined,
we can obtain the conductivities for all temperatures
and chemical potentials without repeating the most time-
consuming part of the calculation [41]. Moreover, the
recursive relations between Chebyshev polynomials lead
to a recursive multiplication of sparse Hamiltonian matrices
that can be performed in a very efficient way in GPUs
[19,29]. Instead of the full calculation of traces, we use self-
averaging properties, normally used in Monte Carlo cal-
culations, to replace the trace in the calculation of μmn by
the average of a small number R ≪ N of random phase
vectors jri and further improve the efficiency of the
calculation [42,43]. The conductivities are averaged over
several disorder realizations S, with R ¼ 5 for each of
them. Because of the self-averaging properties of large
systems, the product SR is the main defining factor of the
accuracy of the trace operation.
The first problem we apply our method to is the physics

of the QHE in disordered graphene. We start from the
electronic Hamiltonian of graphene in the presence of a
random scalar potential and a perpendicular magnetic field
H ¼ −t

P
hi;jieiϕijc†i cj þ

P
iεic

†
i ci, where ci is the annihi-

lation operator of electrons on site iwhere t ≈ 2.8 eV is the
hopping energy between nearest neighbors (NN) sites in a
honeycomb lattice. The perpendicular magnetic field is
included by Peierls’ substitution ϕij ¼ 2π=Φ0

R
i
j
~A · d~l.

Using the Landau gauge ~A ¼ ð−By; 0; 0Þ, the phase will
be ϕij ¼ 0 along the y direction and ϕij ¼ �πðy=aÞΦ=Φ0

along the ∓x direction, where Φ is the magnetic flux per
unit cell, Φ0 being the quantum of magnetic flux. The
second term inH represents the on-site Anderson disorder,
where εi is randomly chosen from a uniform probability
distribution pðεiÞ ¼ ð1=γÞθ½ðγ=2Þ − jεij�, where γ accounts
for the amount of disorder introduced in the system. Let us
begin with a graphene layer with N ≈ 2.6 × 105 sites with
periodic boundary conditions and weak disorder given by
γ ¼ 0.1t and SR ¼ 200. In the presence of a perpendicular
magnetic field such that Φ=Φ0 ≈ 1 × 10−3, the electronic
density of states (DOS) presents several Landau levels
close to the Dirac point. Away from E ¼ 0, the magnetic
length is larger than the system size; the band structure still
presents a large number of peaks, with a nonzero density of
states between the peaks, which results in a metal behavior,
as seen in Fig. 1(b). We compute the longitudinal and off-
diagonal conductivities as a function of the chemical
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potential μ and close to μ ¼ 0 the results are consistent with
the QHE in pure graphene. Figure 1(a) shows the peaks in
σxx that are located exactly at the peaks of the density of
state. For σxx ¼ 0 we see well-resolved plateaus of the Hall
conductivity following σxy ¼ 4e2=hðnþ 1=2Þ, indicating
that the method captures the topological nature of the
insulating phase. The effect of the temperature is the
predictable broadening of the longitudinal conductivity
peaks together with the smearing of the quantum Hall
plateau. Figure 1(c) reports Shubnikov–de Haas oscilla-
tions in the longitudinal conductivity away from the Dirac
point. Similarly to what is observed experimentally [44],
they are sensitive to changes in T. To get results as accurate
as those in Fig. 1, one needs to look at the convergence of
the expansion as a function of the few parameters that were
introduced in our approach, such as the polynomial order
M and the product SR. To illustrate this, in Fig. 2 we show
the dependence of σxx and σxy onM and SR. For disordered
systems, the interference due to quasiparticle scattering off
the impurities [29] results in an oscillatory behavior of the
Chebyshev moments. Because of this, an accurate solution
requires a large number of moments. The energy resolution
of the KPM depends onM and its value is important for the
convergence of the sharp peaks of σxx. This is illustrated in
Fig. 2(a) where the conductivity peak at E ¼ 0 is consistent
with recent numerical calculations [14,23] and its con-
vergence is only achieved for M > 6000.
The energies of the Laudau levels close to the Dirac point

scale with
ffiffiffi
n

p
, reducing the gap between high Landau

levels. Simultaneously, the density of states increases with
E. Consequently, we need more moments in the expansion

to resolve small gaps and localize carriers in regions of the
spectra with more available states. As can be seen in
Fig. 2(b), this results in a nonhomogeneous convergence
of the expansion: the plateaus located close to E ¼ 0
converge for lower values of M while the higher Landau
levels need more moments to converge. To ensure accurate
results, we can track the global convergence of the
conductivity as a function of M in a desirable energy
window [33].
We also need a large SR to achieve the self-averaging

condition [15]. In particular, σxx and the transition between
quantum Hall plateaus are sensitive to SR as illustrated in
Figs. 2(c) and 2(d) and convergence is obtained for
SR > 125. From Fig. 2, we can see that intermediate
values of M and SR are enough for a qualitative analysis
of σαβ. For higher accuracy one needs larger values of M,
which for good convergence would also require SR to be
increased.
Nontrivial topologies in the band structure can also occur

in the absence of an external magnetic field. In Chern
insulators, time-reversal symmetry is explicitly broken
without the need of an external magnetic field. In this
sense, these systems can be seen as the quantized version of
the AHE that has been recently observed experimentally
[45]. A simple model proposed by Haldane [24] in a
honeycomb lattice provides all the key ingredients of Chern
insulators. The Hamiltonian is

H ¼ −t
X
hi;ji

c†i cj þ t2
X
hhi;jii

eiϕijc†i cj �
ΔAB

2

X
i∈A=B

c†i ci; ð6Þ

where t and t2 are the nearest and next-nearest-neighbor
hopping amplitudes. ϕij is equivalent to a Peierls phase

-0.2 -0.1 0 0.1 0.2

Energy/t

-2

-1

0

1

2
C

on
du

ct
iv

ity
 (

4e
2 /h

)

0.3 0.4 0.5 0.6

1

2

3

4

-0.8 -0.4 0 0.4 0.8

D
O

S

(a)

(b)

(c)
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with zero total flux per unit cell. The last term is an energy
offset between sublattices A and B that breaks the inversion
symmetry of the Hamiltonian, opening a gap ΔAB in the
band structure. For ϕ ¼ π=2 and ΔAB ¼ 0, the system also
presents a gap of ΔT ¼ 6

ffiffiffi
3

p
t2, and if μ lies inside the gap,

the system is a Chern insulator with σxy ¼ e2=h. If ΔAB is
continuously increased, it undergoes a quantum phase
transition from a Chern insulator to a normal insulator
for ΔAB > ΔT [24]. We proceed to investigate the QAHE
for ΔAB ¼ 0 in the presence of Anderson disorder with
bounds �γ. As can be seen in Fig 3(a), for weak disorder
the Chern insulator is still characterized by a gap in the
DOS where the Hall conductivity is quantized
(σxy ¼ e2=h). For increasing values of T, the longitudinal
and transverse resistivities are in qualitative agreement with
the experimental results of Ref. [45], with the suppression
of both the peak in ρxy and the dip in ρxx supporting their
findings.
A Chern insulator with a band gap Δ can be obtained by

either having ΔAB ¼ 0 with ΔT ¼ Δ or Δ ¼ ΔT − ΔAB. In
both situations, the QAHE leads to σxy ¼ e2=h that
survives to intermediate disorder strength. Surprisingly,
the two systems respond differently to strong disorder: as
can be seen in Fig. 3, while disorder closes the gap and
destroys the Chern insulator in the system with inversion
symmetry [panel (b)], the QAHE with ΔAB ≠ 0 is insensi-
tive to increasing Anderson disorder [panel (c)]. As
illustrated in panel (c), large disorder can localize carriers
and extend the topological phase to energies in the vicinity
of the bulk gap, similarly to what is observed in topological

Anderson insulators [46,47]. For illustration purposes, the
values of ΔT and ΔAB used in panel (c) are large in
comparison with the values in (b). However, the same effect
can be seen if ΔT > ΔAB ≠ 0. To understand this behavior,
we need to compare the gaps at the Dirac points in these
two situations: For ΔAB ¼ 0, the two valleys are degenerate
and the gaps in K and K0 are both ΔT . On the other hand,
for ΔAB ≠ 0, the interplay between ΔT and ΔAB lifts the
degeneracy between valleys so that one has Δ ¼ ΔT − ΔAB
and the other has Δ ¼ ΔT þ ΔAB [see panel (d)]. The
gap difference has important consequences for the
transport properties of the system. For EF in the range
ΔT þ ΔAB > E > ΔT − ΔAB, all the states belong to K
(the point group symmetry is C3) and intervalley scattering
is forbidden as there are not available states connected to
K0. This situation results in a smaller longitudinal
resistivity. Also, it protects the topological gap and the
QAHE as intervalley scattering is detrimental to the
state. Counterintuitively, an asymmetry between sublattices
A and B can help to stabilize the Chern insulator. In the
limit of ΔT ¼ ΔAB the gap closes in one of the
valleys, producing a state that is protected from intervalley
scattering and emulates a Weyl semimetal.
In summary, we have developed a numerical method to

calculate the longitudinal and transverse conductivities of
tight-binding Hamiltonians in real space. We illustrated the
stability of the method by applying it to the QHE in
disordered graphene, studying how the method’s accuracy
varies with the number of moments used in the expansion.
To further illustrate the power of the method, we inves-
tigated the effect of disorder in the transport properties
of a Chern insulator and found that due to the suppression
of intervalley scattering, a Chern insulator with
broken inversion symmetry is protected against scalar
disorder. This finding can be useful in the search
of Chern and topological insulating phases in novel
materials.
The technique we have described is very general, and is

suitable for the calculation of transport properties in
finite temperature, disordered systems. One can simulate
very large system sizes due to the method’s high paral-
lelizability that can be exploited in GPUs. Among
other systems, we envisage that this method will be useful
in the study of novel models with nontrivial topologies
[48], spin transport in topological insulators, as well
as materials without a topological phase, such as spin
Hall conductivity in graphene. It can also be easily adapted
to different geometries and multilayers of different
materials.
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