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We demonstrate that honeycomb arrays of microcavity pillars behave as an optical-frequency two-
dimensional photonic topological insulator. We show that the interplay between the photonic spin-orbit
coupling natively present in this system and the Zeeman splitting of exciton polaritons in external magnetic
fields leads to the opening of a nontrivial gap characterized by a C ¼ �2 set of band Chern numbers and to
the formation of topologically protected one-way edge states.
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The history of topological insulators (TIs) dates back to
the discovery of the quantum Hall effect (QHE) by Klaus
von Klitzing in 1980 [1]. In his experiment, a strong
magnetic field pinned the conduction-band electrons to
the Landau levels, opening a band gap in the bulk and thus
converting an electron conductor to an insulator. The edge
electron states, on the contrary, carried one-way currents,
protected from backscattering and responsible for the integer
Hall conductance [2]. This is an example of a Z topological
insulator. The classification that allowed distinguishing this
phase from a conventional band insulator is based on the
Chern topological invariant [3], an integer number character-
izing the band structure in terms of the Berry phase.
Awhole new family of TI materials with different sets of

topological invariants and symmetries were later proposed
and discovered [4]. Graphene has a special place in this
family: it allowed the observation of the QHE at room
temperature [5] and played a role of a model system for QHE
without net magnetic flux [6] and the quantum spin Hall
effect (QSHE) [7]. The latter is associated with topologically
protected boundary spin currents and is characterized by a
nonzero Z2 invariant stemming from the spin-orbit inter-
action (SOI) for electrons [8] (without external magnetic
field). These spin currents in the Z2 TI are formed from two
spin components propagating in opposite directions, con-
trary to the Z TI, where both spin components propagate in
the same direction, the other being forbidden. Although the
extremely small SOI has not allowed us to observe QSHE
in graphene, it was later demonstrated in various two-
dimensional (2D) and three-dimensional structures [9,10].
A Floquet TI having a topologically nontrivial gap was
realized in a 2D heterostructure under a microwave-range
electromagnetic irradiation [11].
Many promising implementations of topological phases

in bosonic systems were recently proposed in honeycomb
photonic gyromagneticwaveguides [12–14], coupledmicro-
cavities [15], coupled cavity rings [16], coupled waveguides
with a spatial modulation [17], and photonic waveguides
(out of the optical range) based on metamaterials with

bianisotropic behavior [18,19]. Finally, optical QHE due
to artificial gauge fields [20] was predicted in microcavity
lattices.
Cavity polaritons result from the strong coupling between

confined cavity photons and quantum well (QW) excitons.
They are photonic states, but with an exciton fraction,
making them strongly interacting—a feature at the heart
of polariton Bose-Einstein condensation and of the quantum
fluid behavior of a polariton gas [21]. In this Letter, we
exploit other polariton features: the exciton (and thus
polariton) Zeeman splitting [22,23] and the polarization
splitting of photonic modes, interpreted as an effective SOI
for polaritons [24–27]. In-plane potentials for photons can
also be created by using metal deposition [28], surface
acoustic waves [29], or patterning of the planar structure
[30]. All these ingredients give the polariton platform a
unique flexibility to engineer the photonic properties of
structures at optical frequencies. A first proposal of using
polaritons to create a photonic topological insulator was
given in Ref. [31], where the authors introduced winding in
the system via the phase of the light matter coupling
depending on the polar angle (vortical coupling), whose
feasibility has not yet been demonstrated experimentally.
In this work, rather than creating artificial gauge fields

or using weak gyromagnetic optical activity to break the
time-reversal symmetry, we propose to exploit the natural
susceptibility of microcavity polaritons to the magnetic
field and the effective SOI acting on polaritons in photonic
nanostructures. We consider polaritons in a honeycomb
potential, called polariton graphene [30,32]. We demon-
strate that a real magnetic field applied along the growth
axis allows the formation of an original Z topological
insulator with band Chern numbers Cm ¼ �2. We find the
protected edge states by tight-binding calculation of the
honeycomb microcavity stripe eigenstates. This result is
confirmed by direct numerical simulations. We stress that
contrary to Ref. [31], our proposal is based on existing
ingredients all having the proper magnitude for the effect
to be observable experimentally.
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Tight-binding model.—We first consider a photonic
molecule consisting of two coupled pillars A and B
[Fig. 1(b)] and find its 4 × 4 Hamiltonian in the following
basis of states jA; Li, jA; Ti, jB; Li, jB; Ti. Here, A=B
define the pillar at which a state is localized, while L=T
name the polarization of a state—either longitudinal or
transverse to the AB axis connecting the pillars. Because of
the circular symmetry of the pillars and their identity, all
basis states are degenerate; we set their energy to 0. In the
absence of external magnetic field, within each pillar
linearly polarized states are uncoupled; therefore, we find
that 2 × 2 diagonal blocks of the Hamiltonian consist of
zeros. A polarization splitting arises from the difference of
reflection coefficients of the DBRs for two polarizations
(TE/TM or L=T) [33]. This splitting acts on a propagating
polariton (thus affecting the off-diagonal matrix elements)
as an effective field with absolute value proportional to
squared momentum, which can be described by assigning
two effective masses mL < mT to the new eigenstates,
polarized longitudinally and transversely to propagation
direction. We estimate potential barrier due to size quan-
tization at narrow junction between the pillars as
VLðTÞ ¼ π2ℏ2=2mLðTÞw2, where w is the junction width.
Note that the barrier value depends on the mass in direction,
orthogonal to the AB axis. For the state jA;LðTÞi, wave
function tail at pillar B is determined by tunnel extinction

coefficient κLðTÞ ¼ ℏ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mLðTÞðVTðLÞ − EÞ

q
. Therefore,

we find that the nondiagonal blocks have different
matrix elements −JL;T , JL > JT at their diagonals, whose
values depend on overlaps of corresponding wave func-
tions. The off-diagonal terms are zero, because all sources
of spin conversion other than LT splitting are neglected.
A transfer to the basis of circularly polarized states gives

(see the Supplemental Material [34]) −J ¼ −ðJL þ JTÞ=2
matrix elements at diagonals and introduces off-diagonal
terms −δJ ¼ −ðJL − JTÞ=2.
Starting from this Hamiltonian, we construct the polari-

tonic graphene [Fig. 1(a)] effective Hamiltonian in nearest-
neighbor approximation. A state of the polariton graphene
can be described by a bispinor Φ ¼ ðΨþ

A ;Ψ
−
A;Ψ

þ
B ;Ψ

−
BÞT,

with Ψ�
AðBÞ the wave functions of the two sublattices and

two spin components. We account for the magnetic field
via Zeeman splitting Δ of states, localized at a pillar.
Finally, the effective Hamiltonian in the presence of a real
magnetic field applied along the z direction reads (see the
Supplemental Material [34])

Hk ¼
�
Δσz Fk

F†
k Δσz

�
; Δ ¼ jxj2gXμBHz=2; ð1Þ

where σz is the Pauli matrix, x is the excitonic Hopfield
coefficient, gX is the effective g factor for the 2D exciton,
μB is the Bohr magneton, and Hz is the applied magnetic
field, giving rise to polariton Zeeman splitting Δ.

Fk ¼ −
�

fkJ fþkδJ
f−kδJ fkJ

�
; ð2Þ

where complex coefficients fk,f�k are defined by

fk ¼
X3
j¼1

expð−ikdφj
Þ;

f�k ¼
X3
j¼1

exp ð−i½kdφj
∓2φj�Þ;

and φj ¼ 2πðj − 1Þ=3 is the angle between the horizontal
axis and the direction to the jth nearest neighbor of a
type-A pillar. J is the polarization-independent tunneling
coefficient, whereas δJ is the SOI-induced polarization-
dependent term.Without themagnetic field, theHamiltonian
(1) can be exactly diagonalized [26]. The energy dispersions
obtained are relatively close to those of bilayer graphene
[35] and of a monolayer graphene in the presence of Rashba
SOI [36]. The polarization texture of the eigenstates is,
however, different (Rashba vs Dresselhaus).
The dispersion close to the K point is shown in the

dashed lines on Fig. 2(a). Under the effect of SOI, the Dirac
point transforms into four inverted parabolas. Two parab-
olas are split off, while the two central ones cross each
other. It is instructive to consider the eigenstates exactly at
the Dirac points. At the K point, the eigenstates of the two
central parabolas are fully projected on Ψ−

A and Ψþ
B ,

respectively, whereas at the K0 point they project on Ψþ
A

and Ψ−
B, respectively. Let us now qualitatively consider the

consequence of a finite Zeeman splitting. As sketched in
Fig. 2(b), the degeneracy between the states in the crossing
points of two branches (dashed lines) is lifted by 2Δ, and

AA B
DBR

QW
 
DBR

(a) (b)

s
 

FIG. 1 (color online). (a) Topologically protected light propa-
gation through an edge of polariton topological insulator. The
polariton graphene considered is based on an etched planar
microcavity. The cavity is constituted by two distributed Bragg
reflectors (DBRs) sandwiching a cavity with embedded QWs.
The energy splitting existing between TE and TM polarized
modes provides the photonic SOI. The application of a real
magnetic field perpendicular to the x-y plane of the structure
opens the nontrivial gap. Edge modes are one-way propagative
modes that cannot elastically scatter to the bulk states. In a stripe
geometry, normally incident light is guided either clockwise or
anticlockwise, depending on the external magnetic field sign.
(b) A zoom view of two coupled microcavity pillars A and B; L
and T localized polariton modes are linearly polarized along and
transversely to the AB axis between the centers of the pillars.
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the states split off by the SOI are further shifted. At the K
(K0) point, the “valence” band is formed from the BðAÞ
pillars and the “conduction” band is formed from the AðBÞ
pillars. The reversed order of the band in the basis of the
sublattices signifies a topological nontriviality of the gap
[4]. In the spin basis, however, the valence and conduction
bands are equivalent at K and K0, unlike the Z2-topological
insulator [4].
The result of the complete diagonalization of the

Hamiltonian (1) is plotted with solid lines in Fig. 2(a).
As expected, it shows an energy gap, saturating to Eg ∼ 3δJ
at jΔj ∼ δJ. Without SOI (δJ ¼ 0), the application of a
magnetic field does not open any gap, as it keeps the
symmetry between K and K0 valleys, while breaking
the symmetry between the spin projections on the z axis.
The band structure in this latter case is constituted by two
graphene dispersions shifted in energy by the polariton
Zeeman splitting.
The Chern numbers are numerically calculated from the

Berry connection over the Brillouin zone [4],

Cm ¼ 1

2π

ZZ

BZ

Bk;md2k; ð3Þ

where m is the branch index, and the Berry curvature Bk;m
is expressed in the effective Hamiltonian (1) and its
eigenstates jΦk;mi with corresponding energies Ek;m

Bk;m ¼ i
X
l≠m

hΦk;mj∇kHkjΦk;li × hΦk;lj∇kHkjΦk;mi
ðEk;m − Ek;lÞ2

:

ð4Þ

Two inner branches, split by the interplay of external
magnetic field and effective SOI, have nonzero Berry
connections around K and K0 points, each giving �1
contribution to the total band Chern number �2 [marked
in green in Fig. 2(b)]. Outer branches, on the contrary, have
zero Berry curvature over all reciprocal space.
As a consequence of bulk-boundary correspondence, a

finite micropillar honeycomb structure has one-way propa-
gating edge states. To demonstrate this, we use the same
tight-binding approach to model a quasi-one-dimensional
(1D) stripe of microcavity pillars, consisting of 50 zigzag
chains.
To demonstrate one-way edge states in the tight-binding

approach, we derive a 4N × 4N Hamiltonian for a polariton
graphene tape, consisting of N infinite zigzag stripes. For
this, we set a basis of Bloch waves Ψ�

A=B;nðkxÞ, where n
index numerates stripes, and kx is the quasi-wave vector in
the zigzag direction. The diagonal blocks describe coupling
within one stripe and are derived in the same fashion as
the Hamiltonian (1); coupling between stripes is accounted
for in subdiagonal blocks.
Figure 2(c) shows the result of the band structure

calculation. The degree of localization on edges is calcu-
lated from the wave function densities on the edge chains
jΨLj2 and jΨRj2 (left and right, see inset) and is shown
with color so that the edge states are blue and red. The
propagation direction of these edge states is related to the
direction of the external magnetic field: the photon edge
current is either clockwise or anticlockwise depending
on the signs of Hz and gX. It is important that we deal
with a real polariton current and not with a spin current.
The polarization of the surface states is linear: both spin
components propagate in the same direction.
The presented results were obtained for the most realistic

case of rather small SOI (δJ=J ¼ 0.1). In this case, the
dispersion topology in the absence of magnetic field is
characterized by the trigonal warping effect, typical for
bilayer graphene [35] and monolayer graphenewith Rashba
SOI [36]. It consists of the emergence of three additional
Dirac cones in the vicinity of each Brillouin zone corner.
However, at a critical strength of the spin-orbit interaction
δJ ¼ J=2, a transition occurs in the topology of the
dispersion: additional Dirac cones with opposite Chern
numbers meet in pairs at the centers of Brillouin zone edges
and recombine (see the Supplemental Material [34] for the
dispersion). This leads to a change of the band Chern
number set from Cm ¼ �2 to Cm ¼ �1.

(a)

(c)(c)

(b)

FIG. 2 (color online). Nontrivial band structure of the polariton
graphene stripe in an external magnetic field. (a) Bulk energy
dispersion without (dashed lines) and with (solid lines) magnetic
field. (b) Illustration of degeneracy lifting in K and K0 points.
Because of coupling between sublattice and polarization, states
localized on one sublattice go up in energy at one point and down
in the other. Chern numbers at each point are shown in green.
(c) Numerical calculation of eigenstates: edge states are marked
with color. Direction of their propagation is given by the sign of
the product HzgX and is protected from both backscattering and
scattering into the bulk.
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Numerical simulations.— In order to demonstrate the
feasibility of experimental observations and to confirm our
predictions, we carry out a full numerical simulation,
describing the time evolution of the polariton wave
function by solving the spinor Schrodinger equation,

iℏ
∂ψ�
∂t ¼ −

ℏ2

2m
Δψ� þ Uψ� −

iℏ
2τ

ψ� � Δψ�

þ β

� ∂
∂x∓i

∂
∂y

�
2

ψ∓

þ
X
j

Pj�e−½ðt−t0Þ
2=τ2

0
�e−½ðr−rjÞ2=σ2�eiðkr−ωtÞ; ð5Þ

where ψðr; tÞ ¼ ψþðr; tÞ;ψ−ðr; tÞ are the two circular
components of the wave function, m is the polariton mass,
and τ is the lifetime. Particles are created in three spots
by pulsed quasiresonant pumping. The nVidia CUDA
graphical processor was used to carry out the numerical
integration of the 2D spinor Schrödinger equation. The
high-resolution (1024 × 1024) honeycomb lattice potential
UðrÞ contains 23 × 30 elementary cells. The pillar size was
1.3 μm, and the center-to-center distance d ¼ 2.5 μm. All
energies are measured from the bottom of the polariton
branch, which can shift with the magnetic field. Circular
excitation allows us to be sure that all linearly polarized
states are pumped with sufficient efficiency.
Figure 3 demonstrates qualitatively different behavior

with and without the magnetic field (parameters of the
simulations are given in the caption). Without the field
(Δ ¼ 0), the excitation energy corresponds to propagating
states, and the resulting expansion of polaritons is visible
in Fig. 3(a). No gap is opened, and the particles created on
the surface by the two corresponding pumps are rapidly

expanding into the bulk: after only 20 ps, the intensity is
distributed over a significant part of the sample. However,
under an applied field giving Δ ¼ 0.1 meV, the excitation
energy lies within a gap, which makes the injection in
the center ineffective: no particles created by the pump
are visible in the center after 100 ps. But the spots on
the edges now become resonant with the surface states,
which have appeared there, and their one-way propagation
is visible in Fig. 3(b): after 100 ps, particles are about
25 μm away from the pump spots. Although particles
are created with both positive and negative wave
vectors along a given edge, they propagate in only one
direction, which proves the one-way nature of the surface
states. The transverse profile of these states shows an
exponential decay (Supplemental Material [34]) with a
characteristic length of ð2κÞ−1 ¼ 3.1�0.1 μm, correspond-
ing to the analytical estimate of the extinction coefficient

κ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEg=ℏ2

q
determined by the size of the gap Eg.

Thus, the full numerical simulation confirms the predic-
tions of the tight-binding model on the appearance of the
gap in the presence of magnetic field (Supplemental
Material [34]) and the formation of one-way surface states.
All the parameters used in the numerical simulations are

entirely realistic. Indeed, the experimental realization of the
effect has one important requirement: both δJ and Δ must
exceed the radiative broadening, which is of the order of
1=ð25 psÞ ≈ 30 μeV [30], but also disorder-induced broad-
ening, which is naturally included in our simulations through
the finite spatial resolution. The total linewidth we get is
60 μeV, which is a good but realistic value. The photonic
SOI finds its origin in the polarization splittings of photonic
nanostructures. In etched planar cavities, it is induced by the
TE-TM splitting [37] but also by strain and other structural
effects that enhance the splittings up to 50–200 μeV in 1D
ridges [38] or coupled pillar structures [39]. The Zeeman
splitting between the spin components of polaritons can be
of the order of 100–200 μeV at moderate magnetic fields
(about 10 T) [22,23]. The size of the pillars we consider
allows the formation of clearly separated s and p bands, so
the presence of the excited states does not affect the lowest
band. Moreover, as shown by our preliminary calculations,
the p band [30] might be even more suitable for the
observation of topologically protected surface states due
to the increased SOI.
In summary, we have demonstrated that a polariton

graphene under magnetic field becomes a Z topological
insulator with protected edge states at optical frequencies. It
resembles the QHE behavior of electrons and photons [15],
both based on the appearance of Landau levels. However,
its origin is different, being closer to the Haldane proposals
[6,12]. The gap appears in our case due to the Zeeman
splitting of electrically uncharged particles and specific
spin-orbit coupling acting together similarly to spatially
alternating magnetic fields [6,12]. The difference is under-
lined by the unique set of band Chern invariants Cm ¼ �2

FIG. 3 (color online). Propagation of light in the conducting
ðΔ ¼ 0Þ and topological insulator phase ðΔ ≠ 0Þ. Calculated
spatial distribution of emission intensity. (a) Rapid expansion of
the bulk propagative states after 20 ps at Δ ¼ 0; (b) surface states
after 100 ps at Δ ¼ 0.1 meV. White circles show the pumping
spots located at rj. The contours of the potential are traced
in black. The parameters are β ¼ ℏ2ðm−1

l −m−1
t Þ=4m where ml;t

are the effective masses of TM and TE polarized particles,
respectively, and m ¼ 2ðmt −mlÞ=mtml; mt ¼ 5 × 10−5m0,
ml ¼ 0.95mt, where m0 is the free electron mass; τ0 ¼ 35 ps,
σ ¼ 1 μm, ω ¼ 1.6 meV, τ ¼ 25 ps. Pumping P was circular
polarized.
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(transforming into Cm ¼ �1 above a critical SOI,
Supplemental Material [34]). From the point of view of
symmetry, the topologically nontrivial gap is a manifesta-
tion of broken time-reversal and in-plane rotational
symmetry by external magnetic field and effective SOI,
respectively. The interacting nature of polaritons opens
interesting possibilities of studying collective bosonic
effects [21] in TIs. The spin anisotropy of these interactions
[37] leads to self-induced Zeeman splitting, allowing a self-
induced TI for a polarized polariton Bose-Einstein con-
densate. We also mention that a few days after our initial
submission of our work on a preprint server [40], a similar,
independent proposal, but based on the surface acoustic
waves (SAW), was posted on the same server [41]. The
advantage of etched structures over SAW is the reduced
broadening due to the constant nature of the potential.

We acknowledge discussions with A. Poddubny,
A. Amo, and J. Bloch. This work was supported by the
ITN INDEX (289968), ANR Labex Ganex (ANR-11-
LABX-0014), and IRSES POLAPHEN (246912).
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