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We study two dimensional stripe forming systems with competing repulsive interactions decaying as
r−α. We derive an effective Hamiltonian with a short-range part and a generalized dipolar interaction which
depends on the exponent α. An approximate map of this model to a known XY model with dipolar
interactions allows us to conclude that, for α < 2 long-range orientational order of stripes can exist in two
dimensions, and establish the universality class of the models. When α ≥ 2 no long-range order is possible,
but a phase transition in the Kosterlitz-Thouless universality class is still present. These two different
critical scenarios should be observed in experimentally relevant two dimensional systems like electronic
liquids (α ¼ 1) and dipolar magnetic films (α ¼ 3). Results from Langevin simulations of Coulomb and
dipolar systems give support to the theoretical results.
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Two dimensional isotropic systems in which a short-
range attractive interaction competes with a repulsive
interaction decaying as a power law of the form r−α have
been widely studied [1–8]. These include, as physically
relevant examples, the dipolar ðr−3Þ and the Coulomb ðr−1Þ
interaction as the repulsive part of the total energy of the
system. Dipolar interactions competing with exchange and
uniaxial anisotropy arise, e.g., in ultrathin ferromagnetic
films with perpendicular anisotropy [9–11], while long-
range Coulomb interactions appear in low-dimensional
electron systems and may be relevant to understand the
low temperature phase behavior of doped Mott insulators,
two dimensional quantum Hall systems, and high Tc
superconductors [12–15]. It is well known that under
certain conditions of relative strength of interactions and
external parameters these systems develop modulated
stripelike structures in two dimensions which break space
rotational symmetry, similar to classical liquid-crystal
systems, giving rise to smectic, nematic, and hexatic phases
[16–18]. This analogy, based on the 180° rotational
symmetry of stripe structures and elongated liquid-crystal
molecules, allowed us to apply well known results for
liquid-crystal systems [19,20] to predict the qualitative, and
to some extent also quantitative phase behavior of many
systems with modulated order parameters. Nevertheless,
when it is important to understand the true nature of
the thermodynamic phases, the analogy between stripe-
forming systems and classical liquid crystals should not be
taken at face value. The basic units in liquid crystals are
elongated molecules. A given molecule typically interacts
with its near neighbors and due to its elongated form a
rotation in 180° of a single molecule does not alter the

energy of the system. On the other hand, the smallest
relevant scale of a stripe system is the modulation length.
At this scale, a basic cell can be considered as containing a
single interface and then it is a dipole of opposite densities
with an average linear size equal to the modulation length.
It is important to note that such dipoles will not be, in
general, elementary electric or magnetic dipoles, their
character will depend on the nature of the density order
parameter under consideration. Having clarified this point,
in principle, all realistic low energy configurations of the
system can be built from these dipole cells. Clearly, a 180°
rotation of a dipole does change the energy of the system and
then cannot be considered a local symmetry. The system is
only symmetric under global rotations of 180°. Furthermore,
when long-range interactions are present, it is well known
that the behavior of the systems may be very different from
thosewith only short range interactions, which represent the
vast majority of classical liquid-crystal systems. A study of
the nature of low temperature phases of stripe-forming
systems should take these elements into account.
Consider a coarse-grained Hamiltonian in two dimen-

sions of the form

H½ϕð~xÞ� ¼ 1

2

Z
d2x ( ~∇ϕð~xÞ)2

þ 1

2

Z
d2x

Z
d2x0 ϕð~xÞJð~x − ~x0Þϕð ~x0Þ

þ 1

2β

Z
d2xV(ϕð~xÞ); ð1Þ

where β ¼ 1=kBT and VðϕÞ ¼ −ðr=2Þϕ2 þ ðu=4Þϕ4 is a
local potential that could be seen as an entropic
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contribution, the exact form of which is not important to
our work. The long-range repulsive interaction has the form
Jð~xÞ ¼ J=j~xjα which allows us to analyze in a unified way
short range (large α) and long-range (small α) interactions.
Physically relevant examples are the Coulomb interaction
(α ¼ 1) and the dipolar interaction between out-of-plane
magnetic moments (α ¼ 3). It is well known that at low
temperatures this kind of system displays stripelike patterns
in the form of spatial modulations of the density ϕð~xÞ
[1,21–23] in a direction represented by a wave vector
~k0. Low energy excitations of the stripes can be described
in terms of a displacement field uð~xÞ in the form
ϕð~xÞ ¼ P

nϕn cos (nk0xþ nk0uð~xÞ), where x is the
average direction of the modulation and k0 stands for

the modulus of ~k0. If uð~xÞ varies smoothly in space it is

possible to define a local wave vector ~k0 þ k0 ~∇uð~xÞ.
The effective Hamiltonian (1) when expressed in terms

of uð~xÞ has local and nonlocal parts H ¼ Hl þHnl (see
Supplemental Material [24]). Expanding the local compo-
nent to quadratic order in the fluctuation field u, it can be
written in Fourier space as [19,22,25]

Hl ¼ H0l þ
1

2

Z
d2k
ð2πÞ2 ðγxk

2
x þ γyk4yÞûð~kÞûð−~kÞ; ð2Þ

where γx and γy are elastic coefficients which are simply
related to the parameters of the original Hamiltonian and
H0l represents the local contribution to the energy for an
unperturbed stripe. It is well known that this form for the
local fluctuations of the stripe pattern leads to a divergence
of the mean square of the displacement field, implying the
absence of long-range positional order in the system. This
is the standard situation in liquid-crystalline systems. We
go on to consider the effect of the tail of the long-range
interaction in the fluctuation spectrum. The nonlocal
component can be taken into account properly by consid-
ering the long-range interaction between a pair of stripe
dipoles as shown schematically in Fig. 1. The interaction
between a pair of dipoles is given by

δHnl ¼
J
2

Z
δA1

d2x
Z
δA2

d2x0
ϕð~xÞϕð ~x0Þ
j~x − ~x0jα

; ð3Þ

where δA1 and δA2 are the corresponding areas (see Fig. 1).
If λ is the modulation length of the stripe pattern, in the
limit j~x − ~x0j ≫ λ a multipolar expansion of the interaction
(3) leads to (see Supplemental Material [24]):

Hnl ¼
1

2
γ

Z
d2x

Z
d2x0 Ωðj~x − ~x0jÞ

�
~eð~xÞ · ~eð~x0Þ
j~x − ~x0jαþ2

− ðαþ 2Þ ~eð~xÞ · ð~x − ~x0Þ~eð~x0Þ · ð~x − ~x0Þ
j~x − ~x0jαþ4

�
: ð4Þ

In this expression γ ¼ αJP2 and P ¼ ð1=λÞ Rλ dxxϕðxÞ is
the modulus of the dipolar moment. The unit vectors ~eð~xÞ

give the orientation of the dipoles that point along the local
wave vector of the stripe pattern and ΩðxÞ is a short-range
cutoff. Here we have neglected fluctuations in the modu-
lation length and accordingly the elastic coefficient γ is
evaluated in its mean field value (see Supplemental
Material [24] for a discussion on relevant fluctuations).
As we can see from the expression obtained, the long-range
repulsive interaction is responsible for a generalized dipolar
contribution to the total energy.
Considering again small fluctuations in the direction

of the wave vector ~k0, we can write ~eð~xÞ ≈ ð~k0=k0Þþ
~∇uð~xÞ, which leads (considering that ~k0 points in the x
direction) to

ΔHnl ¼
1

2
γ

Z
d2x

Z
d2x0 Ωðj~x − ~x0jÞ

�∂yuð~xÞ∂y0uð~x0Þ
j~x − ~x0jαþ2

− ðαþ 2Þ ðy − y0Þ2∂yuð~xÞ∂y0uð~x0Þ
j~x − ~x0jαþ4

�
: ð5Þ

Thus, the effective Hamiltonian for the displacement field
uð~xÞ results in

ΔH ¼ 1

2

Z
d2k
ð2πÞ2 ðγxk

2
x þ γyk4y þ γnlkα−2ky4Þûð~kÞûð−~kÞ;

ð6Þ

where γnl ¼ γαð2þ αÞ2Cðαþ 4Þ and the function CðαÞ ¼
22−αΓ½ð2 − αÞ=2�=Γðα=2Þ with ΓðxÞ being the Gamma
function. From the previous considerations we are now
in a position to analyze the stability of the positional and
orientational order of the stripe structures when the long-
range interactions are taken into account.
Positional order.—From the effective Hamiltonian (6)

we can see that for α ≥ 2 the γyk4y term dominates over

X

X X '

X '

O

A1

A2

FIG. 1 (color online). Schematic representation of the long-
range interaction between two elementary stripe dipoles.
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γnlkα−2ky4 in the long wavelength limit; i.e., for sufficiently
short range interaction no positional order is possible. If
α < 2 the term γnlkα−2ky4 dominates over γyk4y, but even
in this long-range interacting regime it is easy to check
that the average square fluctuations hu2i ¼ kBT

R ½d2k=
ð2πÞ2�ðγxk2x þ γyk4y þ γnlkα−2ky4Þ−1 diverge with some
power of the system size for any α > 0.
Orientational order.—It is well known that in systems

with short-range interactions orientational order can be
weakened by the presence of topological defects [22,26].
The typical situation in two dimensional systems with
continuous symmetries is that only quasi-long-range order
is possible when interactions are of sufficiently short range
[27]. Nevertheless it is commonly argued that even in
systems with long-range interactions, like Coulomb or
dipolar interactions, shielding effects make the effective
interactions short ranged. Here we revisit this question,
considering explicitly the effects of the range of the
interactions and show that, although the shielding occurs,
the effective interactions are still capable of stabilizing a
long-range-ordered nematic phase in two dimensions for a
long enough interaction range.
At low temperatures the stripe structure can be thought of

as composed by a mosaic of domains of average size ξu
corresponding to the correlation length of the displacement
field uð~xÞ. The orientation of each domain is a natural order
parameter which can be described by a unit vector ~n. This
vector represents the mean orientation of the elementary
dipoles inside a domain and, consequently, it is defined in
terms of the unit vectors ~eð~xÞ previously defined in (4) as

~nð~xÞ ¼
R
ΔAu

d2x ~eð~xÞ
j RΔAu

d2x ~eð~xÞj ; ð7Þ

where ΔAu is the area of the domain, and it is over this area
that a coarse graining process is made. Proceeding as in the
analysis of positional order, we can separate the contribu-
tion to the orientational energy into two parts, a local part
coming from interactions between nearby domains and a
nonlocal one due to interactions between far apart domains.
In the long wavelength limit, at the scale of the correlation
length ξu, the effective interaction between nearby domains
will be of the form

ΔHol ¼
γol
2

Z
d2x ð ~∇θÞ2ð~xÞ; ð8Þ

where θð~xÞ is the angle between two neighboring domains
pointing along directions ~n and ~n0. The elastic coefficient
γol can be estimated to be Jα2P2=ð4ξα−2u Þ. To continue with
our analysis we realize that over length of order ξu,
deviations of the local directors ~eðxÞ are small. This means
after a coarse graining process, the interactions between far
apart well-polarized domains (of typical size ξu × ξu) have
the same form of Eq. (4):

Honl ¼
γ

2

Z
d2x

Z
d2x0Ωðj~x − ~x0jÞ

�
~nð~xÞ · ~nð~x0Þ
j~x − ~x0jαþ2

− ðαþ 2Þ ~nð~xÞ · ð~x − ~x0Þ~nð~x0Þ · ð~x − ~x0Þ
j~x − ~x0jαþ4

�
ð9Þ

as a consequence of the principle of superposition. Then,
Ho ¼ Hol þHonl is the complete orientational effective
Hamiltonian. This is one of the main results of our work
(see Supplemental Material [24]). Note that usually the
effective orientational energy is taken to be composed only
by the local part, corresponding to smooth variations in the
mean directions of neighboring striped domains. We will
see in the sequel that the presence of the second (nonlocal)
term can potentially change the universality class of the
orientational order in the system. A renormalization group
study of the orientational effective Hamiltonian Ho has
been done before in Ref. [28] for the case α ¼ 1, which
corresponds to a dipolar XY model. In that reference, the
authors were able to renormalize the model and, impor-
tantly, they showed that the universal properties are not
changed by the presence of the anisotropic part of the
interaction. Furthermore, they showed that a whole family
of models with isotropic long-range interactions of the formR
~k jkjσ~Sð~kÞ~Sð−~kÞ behave in qualitatively the same way as
the dipolar XY model as long as the range σ < 2. Once the
mapping between these models and ours is established then
the critical properties of the stripe-forming systems are
known. In fact, the Fourier transform of the isotropic term

in Eq. (9) is proportional to
R
~k jkjα~nð~kÞ~nð−~kÞ [8]. Then, one

immediately sees that for α ≥ 2 the leading term in Ho is
quadratic in k. In this case the low temperature physics of
the system is that of the two dimensional short range XY
model; i.e., there is a phase transition of the Kosterlitz-
Thouless (KT) type at a critical temperature TKT. In a
system with dipolar interactions α ¼ 3 we then expect it to
have an isotropic-nematic phase transition of the KT type,
as anticipated in previous works based on analysis of
fluctuations of the local part of the effective Hamiltonian
[23,29]. In this case, nematic order is quasi-long range with
algebraically decaying correlations. However, when α < 2
the physics changes according to the results of Ref. [28].
Now, the nonlocal part in Ho is relevant and rules the low
temperature phase transition. In fact, the long-range nature
of the interactions in this sector are able to stabilize a
nematic phase with truly long-range order below a critical
temperature Tc. It is possible to show, in the framework of
renormalization group equations, that the critical properties
of the systems for α < 2 show some peculiar character-
istics, for example [28], (i) in the critical region, the
correlation length diverges exponentially at Tc, from both
sides, as ξo ∝ exp ðb= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijTc − Tjp Þ, reminiscent of the KT
transition behavior. (ii) For T < Tc in the critical region,
the average dipolar moment behaves asM ∝ ξoðTÞ−ð2−αÞ=2,
showing the existence of long-range order when α < 2.
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(iii) The orientational susceptibility diverges as χo ∝
ξoðTÞα in the critical region.
This kind of behavior should be observable, e.g., in

systems with long-range Coulomb interactions for which
α ¼ 1. This case maps onto the dipolar XY model analyzed
in Ref. [28] and the results may be relevant to understand
the phase behavior of two dimensional electron systems. In
the next section we show results from computer simulations
of systems with α ¼ 1 (Coulomb) and α ¼ 3 (dipolar),
which give support to the different scenarios in both
systems as described before.
Simulation results.—We performed Langevin simula-

tions of the Hamiltonian (1). The relaxational (over-
damped) Langevin dynamics of the density ϕð~xÞ is
defined in reciprocal space by

∂ϕ
∂t ð~k; tÞ ¼ −AαðkÞϕð~k; tÞ − u½ϕ3�Fð~k; tÞ þ ηð~k; tÞ; ð10Þ

where AαðkÞ is the spectrum of fluctuations, i.e., the
Fourier transform of the quadratic part of the effective

Hamiltonian (1), ½ϕ3�Fð~k; tÞ stands for the Fourier

transform of ϕ3ð~x; tÞ and ηð~k; tÞ represents a Gaussian

white noise with correlations hηð~k; tÞηð~k0; t0Þi ¼
ð2πÞ22Tδð~kþ ~k0Þδðt − t0Þ, where T is the effective temper-
ature of the heat bath. We worked with two forms of
AαðkÞ, the first one A3ðkÞ ¼ a2ðk − k0Þ2 − r encodes the
linear dependence of the isotropic dipolar interaction
with k, with a2 and r constants. The second form is
A1ðkÞ ¼ a2ðk2 þ 2k30=k − 3k20Þ − r, corresponding to the
Coulomb interaction proportional to 1=k in two dimen-
sional Fourier space. The parameters were chosen such as
to have the same values of AαðkÞ close to the minimum at
k0. To ensure this we have set a2 ¼ 1 for the dipolar and
a2 ¼ 1=3 for the Coulomb cases. In both cases we set r ¼ 1
and k0 ¼ 1.
For the numerical simulations we have used an implicit

first-order scheme for the numerical integration of Eq. (10)
in the Fourier space, a procedure that guarantees good
numerical stability with time step dt ¼ 0.1, as established
in previous works [30,31]. In the adimensional form, the
periodicity of the stripes are set by the lattice constant dx of

a 2D square grid with linear size L ¼ MN, so that ~k ¼
ðkx=dx; ky=dxÞ with ki ¼ 2πni=L and dx ¼ π=M. Within
this scheme, the stripe length spans M lattice sites and the
linear system size is such that it contains N stripes. We
fixed M ¼ 11 in order to have smooth domain walls.
After an estimation of the equilibration and correlation

times from high temperature quenches, we performed slow
cooling experiments and found that below T ≃ 0.59
(T ≃ 0.45) the dipolar (Coulomb) systems find themselves
in the low temperature phases (with orientational order) for
all system sizes. Above those temperatures the configura-
tions are in a state usually called liquid of stripes, where

both positional and orientational correlation lengths are
finite. So we concentrated on equilibrium simulations
for T ¼ 0.57 (T ¼ 0.43) for system sizes ranging
from ð12 × 11Þ2 up to ð66 × 11Þ2. The orientational
order was quantified through the local director field

~vð~xÞ ¼ ~∇ϕð~xÞ=j ~∇ϕð~xÞj by measuring Q ¼ hcos 2θð~xÞi
and its corresponding susceptibility χo, where θð~xÞ is the
angle defining the local orientation of the director field.
The previous analysis implies that, in the limit of large

system sizes, the orientational susceptibility for interactions
with α ¼ 1 and α ¼ 3 should be qualitatively different for
T < Tc. In the Coulomb case, the second order nature of
the phase transition should imply that the susceptibility
must be finite when N → ∞. On the other hand, for dipolar
interactions the transition should be of the KT type,
implying a monotonic (logarithmic) increase of χo with
system size, which should diverge in the thermodynamic
limit for all T ≤ TKT. Results for the orientational suscep-
tibility as a function of the linear system size (N ¼ L=11)
from simulations are shown in Fig. 2 for the two character-
istic temperatures cited above, corresponding to the low
temperature phase of each model. Although computational
limitations prevent us from reaching very large system
sizes, it is clearly observed that the susceptibility of the
Coulomb system (α ¼ 1) first grows with N, but eventually
suffers a crossover and then saturates at a fixed value for the
largest sizes. On the other hand, the susceptibility in the
dipolar system (α ¼ 3) shows a power law increase with
system size, a behavior consistent with that of a KT-like
critical phase. Of course, we cannot conclude that χo will
not saturate at larger N’s, but the different trend observed in
both systems for equivalent parameter values is a strong
indication that the theoretical results are indeed correct.
In summary, we have shown that two dimensional stripe-

forming systems with isotropic competing interactions can
be classified into two universality classes: for sufficiently
short-range interactions a Kosterlitz-Thouless transition
from an isotropic to a quasi-long-range orientational order

FIG. 2 (color online). Orientational susceptibility of the Cou-
lomb (blue squares) and dipolar (red dots) models as a function of
the linear size of the systems in log-log scale. The full lines are
power law fits with exponents 0.7 (blue) and 0.6 (red).
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phase takes place with the well-known phenomenology of
defect-mediated phase transitions; but, for sufficiently
long-range repulsive interactions a second order phase
transition with some unusual characteristics drives the
system from the isotropic to a fully long-range orientational
order phase. These results improve considerably the under-
standing of the nature of phase transitions in stripe forming
systems and may be relevant to a wide variety of systems,
particularly the strong correlated regime of two dimen-
sional “electronic liquid-crystal” phases and modulated
phases in ultrathin magnetic films with perpendicular
anisotropy.
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