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We analyze the fragmentation behavior of random clusters on the lattice under a process where bonds
between neighboring sites are successively broken. Modeling such structures by configurations of a
generalized Potts or random-cluster model allows us to discuss a wide range of systems with fractal
properties including trees as well as dense clusters. We present exact results for the densities of fragmenting
edges and the distribution of fragment sizes for critical clusters in two dimensions. Dynamical
fragmentation with a size cutoff leads to broad distributions of fragment sizes. The resulting power laws
are shown to encode characteristic fingerprints of the fragmented objects.

DOI: 10.1103/PhysRevLett.114.115701 PACS numbers: 64.60.F-, 05.50.+q, 05.70.Ln

Breakup phenomena are ubiquitous in nature and tech-
nology [1]. They span a vast range of time and length
scales, including polymer degradation [2] as well as
collision induced fragmentation of asteroids [3]. In geol-
ogy, fragmentation results in the distribution of grain sizes
observed in soils; fluids break up into droplets and fluid
structures such as eddies undergo fragmentation [4]. On the
subatomic scale, excited atomic nuclei break up into
fragments [5]. Practical applications, such as mineral
processing, ask for optimizations according to technologi-
cal requirements and efficiency considerations [1]. More
generally, a wide range of structures from transport systems
to social connections are described by complex networks,
whose degree of resilience against fragmentation is a recent
subject of intense scrutiny [6,7].
Considerable effort has been invested in defining and

analyzing tractablemodels of fragmentation processes [1,8].
For brittle materials, in particular, spring or beam models as
well as finite-element techniques have been used to describe
the formation and propagation of cracks in problems of
fracture and instantaneous fragmentation [8–10], and these
models allow one to describe a range of experimental
observations [11–14]. In contrast, the fragment-size distri-
bution (FSD) nðs; tÞ for continuous fragmentation such as in
milling or the breakup of fluids can be described stochas-
tically by rate equations of the form [1]

∂nðs; tÞ
∂t ¼ −

Z
s

0

nðs; tÞcðs; s0; tÞds0

þ 2

Z
∞

s
nðs0; tÞcðs0; s; tÞds0; ð1Þ

where cðs; s0; tÞ ¼ aðs; tÞbðs; s0; tÞ, aðs; tÞ denotes the frag-
mentation rate of clusters of mass s, and bðs; s0; tÞ is the
conditional probability for an s breakup event to result in a
fragment of size s0. Here, the first term on the r.h.s. describes

the loss of fragments at size s due to breakup, whereas the
second term corresponds to the gain from the breakup of
clusters of mass larger than s. In practice, the kernel is
normally assumed to be time independent, cðs; s0; tÞ≡
cðs; s0Þ. Additionally, a description through Eq. (1) implies
a fragmentation process that is spatially homogeneous and
independent of fragment shape—clearly a drastic simplifi-
cation. Under such assumptions a useful scaling theory of
solutions can be formulated [15,16].
Much less progress has been made in terms of results

beyond this mean-field approximation. What is the relation
between geometrical properties of fragmented objects and
the resulting FSDs? This has been studied for loopless
structures such as intervals [17–20] and trees [21]. For
higher-dimensional shapes the only results to date concern
the fragmentation of percolation clusters [22–25]. It was
demonstrated numerically there that the fragmentation rate
aðsÞ as well as the conditional breakup probability bðs; s0Þ
exhibit power-law scaling.
In the present Letter we discuss fragmentation within a

generalization of the percolation model with bond activa-
tion probability p, additional cluster weight q, and partition
function

ZRC ¼
X
G0⊆G

pbðG0Þð1 − pÞE−bðG0ÞqkðG0Þ; p; q > 0; ð2Þ

known as the random-cluster (RC) model [26]. Here, bðG0Þ
denotes the number of active edges out of a total number E
of edges of G, and kðG0Þ is the resulting number of
connected components in the spanning subgraph G0 ⊆ G.
Variation of q allows the model to describe a wide range of
fractal structures and different connectivities [27], thus
accounting for the differences in mechanical response of a
range of materials [28,29]. The model includes as particular
limits percolation (q → 1) and the Ising model (q ¼ 2). As
p is increased, a giant or percolating cluster appears in the
system. For sufficiently large q, this transition is of first
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order, while for small q it is continuous. For the square
lattice the transition occurs at coupling pc ¼ ffiffiffi

q
p

=ðqþ ffiffiffi
q

p Þ,
being continuous for q ≤ 4 [30].
The fragmentation processes discussed here start from an

equilibrium configuration of the RC model (2) with bond
weight p. The removal of a randomly chosen bond can
result in a breakup, creating an additional fragment. In this
case, the bond is called a bridge. Such a consumption of
bridges can serve as a model for the degradation of porous
material such as in the combustion of charcoal particles
[31]. Similarly, it may describe the breaking of chemical
bonds in polymers. The structural resilience under bond
removal then depends on the density B of bridges among all
active bondsN . Figure 1 shows hB=N i for the equilibrium
square-lattice RC model. Incidentally, it is seen that the
change of the relative bridge density and hence the change
in fragility of the configuration becomes maximal at the
critical coupling pc. This is when a significant fraction of
fragmentation events first appears, an effect connected to
the (self-)entanglement of critical clusters [32]. In particu-
lar, as will be shown below, the behavior of hB=N i near pc
is governed by the specific-heat exponent α, which implies
a divergent slope for q ≥ 2.
Let us first discuss what happens for a single bond

removal if we start at the critical point p ¼ pc at time t ¼ 0.
What is the form of aðsÞbðs; s0Þ≡ aðs; 0Þbðs; s0; 0Þ for this
case? A standard ansatz for Eq. (1) is aðsÞ ∼ sλ, where a
range λ ≤ 1 of values is found in experiments [1]. A
shattering transition occurs for λ → 0 [34,35]. To deter-
mine λ for the critical RC model, consider the total number
of bridges

P
ssnðs; 0ÞaðsÞP

ssnðs; 0Þ
∼
Z

s−τþ1þλe−csds ∼ Lðτ−λÞ=ðσνÞ; ð3Þ

where we have used the scaling form of the critical FSD
nðs; 0Þ ∼ s−τe−cs as well as the relations c ∼ jp − pcj1=σ

and jp − pcj ∼ L−1=ν, where L is the linear dimension, and
ν, σ, τ are standard critical exponents [28]. From Fig. 1 it
appears that the density of bridges is asymptotically non-
vanishing. This is seen more clearly in our results for the
critical bridge density shown in Fig. 2(a). Hence, the
average number of bridges in Eq. (3) must grow as Ld,
implying d ¼ ðτ − λÞ=σν. With the exponent identities
σν ¼ 1=dF and τ ¼ 1þ d=dF, where dF is the critical
cluster fractal dimension, this shows that

λ ¼ 1; ð4Þ
independent of q. Hence, the breakup is spatially homo-
geneous. This confirms previous numerical results for
q → 1 [24,36].
While Eq. (4) rests on the numerical observation of Fig. 2

for the square lattice, it is more general. By applying a
rigorous analysis of the influence of an edge [26], we can
express the p derivative of the corresponding partition
function ZRC in terms of hBi and equate this expression
with the standard result, identifying the p derivative of ZRC
with hN i [32]. We deduce that for the RC model on an
arbitrary graph the bridge and bond densities hBi and hN i
are related as

hBi ¼ hN i − p
ð1 − pÞð1 − qÞ ð5Þ

such that, in general, the bridge density is nonvanishing
whenever the edge density is positive. The singular case

FIG. 1 (color online). Mean proportion of bridges among active
edges in the equilibrium random-cluster model for different
values of q. Simulation data are for system sizes L ¼ 64
(q ≠ 1) and L ¼ 2048 (q ¼ 1), respectively. The solid line
denotes the exact result for q ¼ 2 and L → ∞. The vertical
dashed lines specify the location of the critical point. Simulations
were performed using the algorithm described in Ref. [33].

(a)

(b)

FIG. 2 (color online). (a) Asymptotic critical density of bridges,
hBi, and nonbridges, hCi. (b) Finite-size correction exponent κ for
the bridge density according to Eq. (7) for the random-cluster
model on the square lattice.
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hN i ¼ p corresponds to the percolation limit q → 1, for
which a closer analysis shows that hBi still is finite. Hence,
Eq. (4) holds for the RC model on any graph for any bond
probability 0 < p < 1, on or off criticality. For the square
lattice, the critical edge density is hN ic ¼ 1=2 [30], such
that we find the exact expression

hBic ¼
1

2

1

1þ ffiffiffi
q

p ; ð6Þ

generalizing a recent result for percolation [37]. Figure 2(a)
shows our simulation data together with the asymptotic
result (6). Relation (5) shows that the finite-size corrections
to hBi are given by the corrections to the edge density hN i,
which in turn is related to the energy density of the Potts
model u ¼ −2hN i=p [26]. Standard scaling arguments
[38] lead to

uL ¼ u∞ þ AuL−κ þ oðL−κÞ; ð7Þ

where κ ¼ ð1 − αÞ=ν ¼ d − 1=ν, in agreement with our
data for the finite-size corrections to the density of bridges
shown in Fig. 2(b). As a consequence of Eq. (5) one can
show that the p derivative of hBiðpÞ has a power-law
singularity at the critical point pc. This is governed by the
specific-heat exponent α. Similar results can be derived for
the density hCi of nonbridges [32].
Cluster breakup rates are hence proportional to the

cluster size. The typical size of fragments created in a
breakup at criticality is encoded in the probability bðs; s0Þ.
The scale-free nature of the critical RC model suggests a
large-s scaling form

bs0;s ∼ s−ϕG
�
s0

s
;
s

LdF

�
; ð8Þ

which is compatible with exact results for percolation in 1D
and on the Bethe lattice [22]. To relate ϕ to previously
established critical exponents, we multiply Eq. (8) by s0 and
then integrate to find that μs ∼ s2−ϕHðs=LdFÞ. Using a
finite-size scaling form of the overall FSD [27] we
conclude that the scaling of the ensemble average daughter
cluster size is hs0i ∼ LdFð3−d=dF−ϕÞ. On the other hand, one
can show [32] that this is proportional to the average of
Cmin;2, the size of the smaller of the two clusters attached to
two neighboring disconnected vertices [27,33]. In Ref. [27]
it was shown that hCmin;2i ∼ LdF−x2 , where x2 is known as
the two-arm exponent, which implies

ϕ ¼ 2þ ðx2 − dÞ=dF ¼ 2 − dR=dF; ð9Þ

where dR ¼ d − x2 is the red-bond fractal dimension, and d
denotes the spatial dimension. Again, this confirms and
generalizes previous results for bond percolation [23,36].
Another special case concerns the uniform spanning tree

ensemble p; q → 0 with q=p → 0 for which ϕ → 11
8
, in

agreement with Ref. [17]. As the data in Fig. 3(b) show, our
numerical simulations for the full range 0 ≤ q ≤ 4 are in
perfect agreement with Eq. (9). More generally, Fig. 3(a)
demonstrates the validity of the scaling form of Eq. (8),
showing an excellent collapse of data for different cluster
and system sizes onto scaling functions parametrized by q.
Notably, in contrast to recent claims in Ref. [39], for the RC
model clusters do not typically break up into equally sized
fragments.
We now generalize to the case of dynamic or continuous

fragmentation processes, corresponding to the sequential
removal of bonds, or t > 0. In general, we must then expect
the equilibrium description to break down and cðs; s0; tÞ to
be time dependent. Random bond removal drives any initial
configuration into an absorbing state where all fragments
only consist of one vertex. For real fragmentation proc-
esses, however, one rather expects a critical particle size sc,
below which there is no further breakup [1]. This could
come about, for instance, through surface tension for the
breakup of droplets, via the chosen geometry in a mill, or
through energetic limitations in nuclear fragmentation
events. Limited fragmentation has been studied for simpler
geometries such as intervals and trees [18–20,40] (see also
Ref. [31]). For fragmentation processes again starting from
critical equilibrium configurations (here for q → 1), the
final FSD below the cutoff sc is shown in Fig. 4(a). Over a
range of fragment sizes increasing with sc, the data clearly

(a)

(b)

FIG. 3 (color online). (a) Rescaled conditional fragmentation
probability bðs0; sÞ according to Eq. (8) for different values of the
cluster coupling q. (b) Scaling exponent ϕ of daughter clusters in
the fragmentation of the square-lattice RC model as compared to
the exact result (9). The inset shows the scaling exponent of the
ensemble average daughter cluster size hs0i.
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follow a power law. Additionally, the dependence on sc is
only via the ratio s=sc, resulting in a scaling form

nscðs;∞Þ ∼ s−χF
�
s
sc

�
ð10Þ

with a dynamic fragmentation exponent χ. Figure 4(b)
summarizes the result of power-law fits to the decay
displayed in Fig. 4(a) for different cluster weights q. For
sufficiently large cutoffs, we find that χ coincides with the
exponent ϕ ¼ 2 − dR=dF characteristic of equilibrium
fragmentation. The deviations for sc=L2 ≪ 1 are an effect
of the scaling function F of Eq. (10). Moreover, not only
the power-law decay but the full scaling form (10) of the
final FSD is fully supported by our data, as is illustrated in
the scaling collapse shown in the inset of Fig. 4(a).
While the close relation of dynamical fragmentation with

critical equilibrium properties is at first surprising, it can be
understood from the nature of the breakup process. Due to
the shape of the breakup kernel shown in Fig. 3, the process
is dominated by “abrasive” breakup, i.e., small daughter
clusters. Representing the fragmentation events in a genea-
logical tree, we indeed typically find one long branch,
related to the erosion of the giant component, with
subbranches of only a few steps [32]. In contrast, uniform
breakups would result in a statistically balanced genea-
logical tree [20]. We hence find the basic assumption in the
mean-field model (1) of taking the breakup kernel cðs; s0Þ

to be independent of time to be rather appropriate for the
model studied here.
In summary, we have first given a scaling description of

the fragmentation of critical configurations in the RC
model. The density of fragmenting edges is independent
of cluster size, implying λ ¼ 1. The daughter-size function
assumes a scaling form with a scaling index connected to
the two-arm exponent. Further conclusions follow from the
general result (5) [32]. Investigating the asymptotic FSD
under continuous fragmentation with a cutoff sc, we find
that this nonequilibrium process is determined by the
equilibrium critical behavior with a final FSD described
by the equilibrium exponent ϕ. The FSD hence reveals
structural characteristics of the initially fragmented object.
The insensitivity to microscopic details implied by the
universality of critical phenomena indicates that our results
for dynamic fragmentation should be comparable also to
experiments. In fact, the size exponents found experimen-
tally span a range of around 1.2 to 1.9 [1,8,42], which is
also covered by our model on varying q, cf. Fig. 4.
We have restricted ourselves to the case of bond

fragmentation. A more general situation occurs for the
deletion of vertices producing up to z fragments, where
z is the coordination number of the lattice. In this case we
find that the binary branch is still strongly dominant.
Preliminary investigations indicate a connection between
the statistics of such breakup events and generalizations of
Eq. (8), where the scaling exponents ϕðkÞ ¼ 2− ðd− xkÞ=dF
of breakups with k fragments are governed by the corre-
sponding multiarm exponents xk [27].
Our results also carry over to lattices in 3D. In fact, we

have studied the fragmentation of clusters of Eq. (2) on the
simple cubic lattice and confirmed that λ ¼ 1. Selected
results for the value of ϕ in 3D also shown in Fig. 4(b)
indicate that a very similar range of FSDs can be described
there. For the dynamical fragmentation process, we find that
fragmenting solid instead of fractal objects also leads to
algebraically decaying FSDs, however governed by a differ-
ent set of exponents [32]. Beyond the implications of the
present work for fragmentation processes in nature and
industry, an exciting extension concerns the fragmentation of
random graphs and networks in order to model resilience.
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