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Recently it has been proposed that three-component Fermi gases may exhibit a new type of crossover
physics in which an unpaired Fermi sea of atoms smoothly evolves into that of trimers in addition to the
ordinary BCS-BEC crossover of condensed pairs. Here we study its corresponding polaron problem in
which a single impurity atom of one component interacts with condensed pairs of the other two
components with equal populations. By developing a variational approach in the vicinity of a narrow
Feshbach resonance, we show that the impurity atom smoothly changes its character from atom to trimer
with increasing the attraction and eventually there is a sharp transition to dimer. The emergent polaronic
atom-trimer continuity can be probed in ultracold atoms experiments by measuring the impurity spectral
function. Our novel crossover wave function properly incorporating the polaronic atom-trimer continuity
will provide a useful basis to further investigate the phase diagram of three-component Fermi gases in more
general situations.
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Introduction.—Interacting Fermi systems appear across
a broad range of physics with various interaction strengths
and understanding of their properties is of fundamental
importance. When there is a weak attraction between two
components of fermions, the system is unstable toward the
formation of Cooper pairs and becomes a Bardeen-Cooper-
Schrieffer (BCS) superfluid. On the other hand, when the
attraction is sufficiently strong, the two components of
fermions form a diatomic molecule which undergoes the
Bose-Einstein condensation (BEC) and the system
becomes the superfluid again. Because there is no sharp
distinction between the condensation of loosely bound
Cooper pairs and tightly bound molecules, the above two
types of superfluids can be smoothly connected with
increasing the attraction. Indeed, it was shown that the
ordinary mean-field wave function smoothly interpolates
the BCS and BEC superfluids which constitutes the
celebrated BCS-BEC crossover theory providing unified
understanding of Fermi superfluids [1,2]. Since then the
BCS-BEC crossover in two-component Fermi gases has
been the subject of extensive studies [3] and now recog-
nized as a well-established phenomenon, in particular,
because of its experimental realization with ultracold atoms
utilizing Feshbach resonances [4–6].
Yet richer crossover physics may be found in three-

component Fermi gases [7–9]. When an attraction between
three components of fermions is weak, two of them form
Cooper pairs and condense while there is always one
component that remains unpaired and forms a Fermi sea
[10–14]. Then, with increasing the attraction, loosely
bound Cooper pairs will smoothly evolve into tightly
bound molecules according to the BCS-BEC crossover.
But, what will happen to unpaired fermions? A new
possibility recently proposed is that unpaired fermions

forming a Fermi sea smoothly change their character from
atoms to triatomic molecules (trimers) with increasing the
attraction [15]. At first glance, it may seem surprising and
even impossible because an atom and trimer have different
quantum numbers (particle numbers) and thus cannot be
smoothly connected. However, because the condensation of
Cooper pairs or molecules violates the particle number
conservation in units of two, the atom and trimer are
actually indistinguishable in a superfluid state and thus can
be smoothly connected (see Fig. 1). This new type of
crossover physics potentially emerging in three-component
Fermi gases is termed an “atom-trimer continuity” in
analogy with the “quark-hadron continuity” in a superfluid
nuclear matter where deconfined quarks with three colors
are considered to smoothly evolve into confined baryons
with decreasing the nuclear density [16,17].
The atom-trimer continuity was originally inspired by

exploring the universal phase diagram of a three-component
Fermi gas in the vicinity of a narrow Feshbach resonance
[15]. It was found there by controlled analyses that the
unpaired Fermi sea coexisting with condensed pairs is
composed of atoms in the weak coupling dense limit while
composed of trimers in the strong coupling dilute limit.

atom trimer dimer

FIG. 1 (color online). Because of the presence of condensed
pairs, atom (left) and trimer (middle) are indistinguishable in a
superfluid state while they are still distinct from dimer (right).
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Whether they are actually smoothly connected or not,
however, still remains unestablished because of the lack
of a unified theoretical framework that smoothly interpolates
the above two limits. This difficulty largely originates from
the fact that, unlike the BCS-BEC crossover for two-
component Fermi gases, the ordinary mean-field approxi-
mation does not work for three-component Fermi gases
because it completely misses three-body correlations play-
ing an essential role here [15,18–23]. Therefore, it is
challenging but highly desired to develop a new crossover
theory suitable for three-component Fermi gases. Important
progress toward such a goal is to be made in this Letter by
studying the corresponding polaron problem in which a
single impurity atom of one component interacts with
condensed pairs of the other two components of fermions
with equal populations.
Crossover wave function.—As emphasized in Ref. [15],

the BCS-BEC crossover in two-component Fermi gases is
often studied across a broad Feshbach resonance, where a
three-component Fermi gas, however, does not have a
universal many-body ground state because of the Thomas
collapse [24]. A minimal extension to cure this problem is
to consider a narrow Feshbach resonance which is char-
acterized by the nonzero resonance range as well as the
s-wave scattering length [25–28]. Assuming the same
intercomponent interaction for all possible three pairs
[29,30], the polaron problem of a three-component Fermi
gas in the vicinity of a narrow Feshbach resonance is
described by the two-channel Hamiltonian, H ¼ H0−
μðN1 þ N2Þ, which consists of the canonical part

H0 ¼
X

i¼1;2;3

X
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†
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with ϵijk being the antisymmetric tensor and the particle
number operator for the ith component of fermions:
Ni ¼

P
p½ψ†

i ðpÞψ iðpÞ þ
P

j≠iϕ
†
jðpÞϕjðpÞ�. Here ψ†

i ðpÞ
and ϕ†

i ðpÞ with i ¼ 1; 2; 3 create fermionic atoms and
bosonic molecules with momentum p and obey the usual
(anti)commutation relations, while εp ≡ p2=ð2mÞ is the
single-particle kinetic energywith the samemassm assumed
for all three components of fermions. The chemical potential
μ is introduced to only the first two components of fermions
and chosen so that each component has the fixed particle
number density of n1 ¼ n2 ≡ k3F=ð6π2Þ in the thermody-
namic limit V → ∞. The bare detuning ν of a molecule ϕi
and its coupling g to two atoms ϵijkψ jψk are related to the
s-wave scattering length a and the resonance range R� by
ν=g2 ¼ −m=ð4πaÞ þmΛ=ð2π2Þ and g2 ¼ 4π=ðm2R�Þ,

where ℏ ¼ 1 and the momentum cutoff Λ is sent to infinity
at the end of calculations.
We now develop a variational approach aimed at a

unified theoretical framework that smoothly interpolates
the polaronic atom and trimer in a superfluid state. Because
the first two components of fermions have equal popula-
tions and attract each other, they form Cooper pairs and
condense. In order to describe them, we adopt the ordinary
mean-field wave function

jSFi ¼ exp

�
−
jλj2
2

þ λϕ†
3ð0Þ

�Y
p

½upþ vpψ
†
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2ð−pÞ�j0i:
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Here the variational parameters λ, up, vp are determined so
as to minimize the energy expectation value ESF ≡
hSFjHjSFi under constraints jupj2 þ jvpj2 ¼ 1 for all p
to satisfy the normalization condition hSFjSFi ¼ 1. With
the method of Lagrange multipliers, we find jupj2 ¼
ðEp þ εp − μÞ=ð2EpÞ and vp ¼ Δ=ð2Epu�pÞ, where Ep ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεp − μÞ2 þ jΔj2

q
is the quasiparticle energy and the gap
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ffiffiffiffi
V

p
as well as the chemical potential μ
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and the particle number density equation
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2Ep
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These two coupled mean-field equations qualitatively
describe the BCS-BEC crossover of the condensed pairs
with increasing the attraction 1=akF [31] and, furthermore,
become exact in the narrow resonance limit R�kF → ∞ [32].
When a single impurity atom of the third component

with momentum k is added to the above superfluid state (2),
the simplest trial wave function to start with is

jAðkÞi ¼ zkψ
†
3ðkÞjSFi: ð4Þ

While this trial wave function seems to describe an atom-
like impurity on top of the superfluid state, it can also be
viewed as a trimerlike impurity at the same time because
the particle number in the superfluid state fluctuates in units
of two. This peculiarity becomes evident by decomposing
the superfluid wave function jSFi in Eq. (4) into a super-
position of fixed particle number wave functions: jAðkÞi ∝P∞

N¼0½ψ†
3ðkÞ=N!�½Φ†

3ð0Þ�N j0iwith the pair creation operator
defined by Φ†

3ð0Þ≡ λϕ†
3ð0Þ þ

P
pðvp=upÞψ†

1ðpÞψ†
2ð−pÞ.

Here, if one state ψ†
3ðkÞ½Φ†

3ð0Þ�N j0i is viewed as the
atomlike impurity, then another superposed state
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½ψ†
3ðkÞΦ†

3ð0Þ�½Φ†
3ð0Þ�N j0i can be viewed as the trimerlike

impurity inwhich the atomlike impurity is dressed by a zero-
momentum pair extracted from the background condensate
(see Fig. 1). In particular, because of the existence of the
latter component in the atomlike wave function (4), it can
hybridize with the following trimerlike wave function,
i.e., hAðkÞjHjTðkÞi ≠ 0:

jTðkÞi ¼
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1ðpÞψ†

2ðP − pÞ
��

jSFi: ð5Þ

This trimerlike wave function is constructed so that it
becomes the most general three-body wave function in
the zero density limit jSFi → j0i and thus is capable of
exactly reproducing the trimer formation in the vacuum. We
note that the sum in the second line of Eq. (5) excludes
P ¼ 0 because the corresponding component already exists
in Eq. (4) as is evident from its decomposition and,
consequently, the above two wave functions have no overlap
hAðkÞjTðkÞi ¼ 0. With all these preparations, we finally
propose the ansatz

jATðkÞi ¼ jAðkÞi þ jTðkÞi ð6Þ

as a possible crossover wave function that smoothly inter-
polates atomlike jAðkÞi and trimerlike jTðkÞi impurities in a
superfluid state and refer to it as a polaronic atom-
trimer state.
At this point, it is worthwhile to contrast our polaronic

atom-trimer state (6) with the usual polaron in a two-
component Fermi gas [33,34]. In the latter, a single
impurity atom is dressed by a pair of particle and hole
excited from the background Fermi sea [35,36] and thus
distinct from the trimer [37,38], while in the former, a
single impurity atom is dressed by a pair of two particles
extracted from the background condensate and thus indis-
tinguishable from the trimer. A similar situation can be
found in Bose-Fermi mixtures where fermionic atoms and
molecules are indistinguishable in the presence of con-
densed bosons [39–41]. In principle, the single impurity
atom can be further dressed by two or more condensed
pairs to form a pentamerlike or larger molecule, but their
contributions to the impurity wave function are expected to
be insignificant because their formations are not favored by
the Pauli exclusion principle between the same component
of fermions. We also note that our crossover wave function
(6) differs in the spirit from the ansatz in Ref. [20] which is
intended to describe the sharp transition from the superfluid
phase to the trimer liquid phase.

Polaron phase diagram.—The variational parameters zk,
αkσðpÞ, βkðPÞ, γkðP; pÞ in the trial wave function (6) are
determined so as to minimize its energy expectation value
εATðkÞ≡ hATðkÞjHjATðkÞi − ESF under the normalization
condition hATðkÞjATðkÞi ¼ 1. After straightforward cal-
culations, we find that αkðpÞ≡ αk1ðpÞ ¼ αk2ðpÞ and βkðPÞ
simultaneously satisfy

�
−

m
4πa
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εk−P þ Ep þ EP−p − εATðkÞ
: ð7bÞ

These two coupled integral equations have similar struc-
tures to the Skorniakov–Ter-Martirosian-type equations to
determine the trimer binding energy in the vacuum [15],
while the first term in the right-hand side of Eq. (7a) is the
exception originating from the hybridization between the
atomlike and trimerlike wave functions hAðkÞjHjTðkÞi ≠ 0
and thus plays an essential role here. By solving Eqs. (3)
and (7) together with the normalization condition for a
given set of inverse scattering length 1=akF and resonance
range R�kF [42], we obtain the quasiparticle energy
εATðkÞ and the normalized wave function jATðkÞi of the
polaronic atom-trimer state (6). In particular, the important
quantity of our interest is the quasiparticle weight
jzkj2 ¼ hAðkÞjATðkÞi, which measures the atomic fraction
contained in the impurity wave function while the rest
1 − jzkj2 ¼ hTðkÞjATðkÞi measures the trimeric fraction
therein. Therefore, it can serve as an indicator of the
polaronic atom-trimer continuity.
Figure 2 shows the numerically obtained atomic fraction

Z≡ jz0j2 assuming zero center-of-mass momentum k ¼ 0
as well as zero orbital angular momentum, i.e., α0ðpÞ ¼
α0ðjpjÞ and β0ðPÞ ¼ β0ðjPjÞ, where the polaronic atom-
trimer state is expected to have the lowest energy. In the
plane of 1=akF and R�kF, we find that the impurity state is
atomlike Z ∼ 1 in the weak coupling (small 1=akF) or
narrow resonance (large R�kF) region while it becomes
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trimerlike Z ∼ 0 toward the strong coupling (large 1=akF)
and broad resonance (small R�kF) region. These two
regions are indeed smoothly connected in between and
thus exhibit the polaronic atom-trimer continuity. We note
that this smooth crossover from the atomlike impurity to the
trimerlike impurity becomes increasingly sharper toward
the weak coupling and broad resonance limit, 1=akF →
−∞ and R�kF → 0, which is equivalent to taking the zero
density limit kF → 0 and thus the phase boundary there
coincides with the threshold R�=a ¼ −0.0917249 for the
trimer formation in the vacuum [15].
The polaronic atom-trimer continuity is also exhibited by

the quasiparticle energy εATð0Þ of the polaronic atom-
trimer state (6). In the weak coupling limit 1=akF → −∞
where the impurity state is atomlike Z → 1, its energy
resulting from Eqs. (7) reduces to the usual mean-field
polaron energy εATð0Þ → ð4πa=mÞðn1 þ n2Þ [36]. On the
other hand, in the broad resonance limit R�kF → 0 where
the impurity state is trimerlike Z → 0, its energy resulting
from Eqs. (7) can be expressed in terms of the trimer
binding energy E3 in the vacuum as εATð0Þ → E3 − 2μ
[43]. These two asymptotic formulas as well as the
numerically obtained polaronic atom-trimer energy
εATð0Þ are plotted in Fig. 3 as functions of 1=akF by
choosing R�kF ¼ 0.1 for demonstration. Here we find that
the mean-field polaron energy valid in the atomlike region
(1=akF ≲ −1) and the vacuum trimer binding energy valid
in the trimerlike region (1=akF ≳ 0) are indeed smoothly
interpolated by the polaronic atom-trimer energy εATð0Þ
and thus we again confirm the polaronic atom-trimer
continuity.
So far we have considered that a single impurity atom of

the third component binds two fermions from a superfluid

state of the other two components to form a trimerlike
impurity. On the other hand, there exists another possibility
in which the single impurity atom binds one fermion to
form a dimerlike impurity and becomes distinct from the
above polaronic atom-trimer state (see Fig. 1). Such a dimer
state is twofold degenerate with respect to the exchange of
components 1 ↔ 2 and the simplest trial wave function to
describe one of the two is

jDðkÞi ¼
�
β̄kϕ

†
1ðkÞ þ

1ffiffiffiffi
V

p
X
p

γ̄kðpÞψ†
2ðpÞψ†

3ðk − pÞ
�
jSFi:

ð8Þ

By minimizing its energy expectation value εDðkÞ≡
hDðkÞjHjDðkÞi − ESF with respect to the variational
parameters β̄k, γ̄kðpÞ under the normalization condition
hDðkÞjDðkÞi ¼ 1 [44], we obtain an equation solved
by εDðkÞ:

−
m
4πa

þm2R�
4π

�
εk
2
− μ − εDðkÞ

�

¼
Z

dp
ð2πÞ3

� jupj2
Ep þ εk−p − εDðkÞ

−
1

2εp

�
: ð9Þ

In particular, by comparing Eq. (9) with the gap equa-
tion (3a), its solution at zero center-of-mass momentum
k ¼ 0 is easily identified as εDð0Þ ¼ μ. The resulting dimer
energy at R�kF ¼ 0.1 is also plotted in Fig. 3 where we find
that the twofold degenerate dimer states have the lower
energy than the polaronic atom-trimer state in the strong
coupling region 1=akF > 3.6. Therefore, in addition to the
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FIG. 2 (color online). Atomic fraction Z≡ jzk¼0j2 in the
polaronic atom-trimer state (6) in the plane of the inverse
scattering length 1=akF and the resonance range R�kF. The
impurity state is atomlike in the blue region (Z ≳ 0.8) while
trimerlike in the purple region (Z ≲ 0.2) and they are smoothly
connected in the yellow-to-orange crossover region (0.2≲
Z ≲ 0.8). The black solid curve indicates the phase boundary
above which the dimer state (8) has the lower energy than the
polaronic atom-trimer state.
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FIG. 3 (color online). Polaronic atom-trimer energy εATðk ¼ 0Þ
in units of the Fermi energy εF ≡ k2F=ð2mÞ at R�kF ¼ 0.1 as a
function of 1=akF. It is plotted by the colored solid curve with the
atomic fraction Z indicated by the same color as in Fig. 2. The
upper left dashed curve is the mean-field polaron energy ε ¼
ð4πa=mÞðk3F=3π2Þ while the lower right one is the vacuum trimer
binding energy ε ¼ E3 − 2μ. The black solid curve represents the
twofold degenerate dimer energy εDð0Þ ¼ μ obtained from the
simple ansatz (8).
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above smooth crossover from the atomlike impurity to the
trimerlike impurity, there is a sharp transition to the
dimerlike impurity with increasing the attraction 1=akF
and the corresponding phase boundary in the plane of
1=akF and R�kF is indicated in Fig. 2. This sharp transition
from the polaronic atom-trimer state (6) to the dimer state
(8) is indeed a close analog of the polaron-molecule
transition in a two-component Fermi gas [45].
Summary and outlook.—This Letter is aimed at devel-

oping a new crossover theory that smoothly interpolates
atom and trimer in three-component Fermi gases. To this
end, we took a variational approach in the vicinity of a
narrow Feshbach resonance and successfully showed that a
single impurity atom in the presence of condensed pairs
smoothly changes its character from atom to trimer with
increasing the attraction and eventually there is a sharp
transition to dimer. The emergent polaronic atom-trimer
continuity is signaled by the rapid decrease of the quasi-
particle weight jzkj2 as well as the polaron energy εATðkÞ
evolving into the trimer binding energy (see Fig. 3 for
k ¼ 0). These key quantities are actually measurable in
ultracold atom experiments by transferring an impurity
atom with momentum k from a noninteracting state to an
interacting state, whose transition rate at frequency ω
exhibits a quasiparticle peak of IkðωÞjpeak ¼ jzkj2δ½ωþ
εk − εATðkÞ� [46–49]. Therefore, by utilizing this inverse
radio-frequency or microwave spectroscopy [50,51], the
polaronic atom-trimer continuity may be experimentally
probed, for example, with a three-component Fermi gas of
6Li [7–9] or a recently realized superfluid Bose-Fermi
mixture of 7Li-6Li [52].
Our findings on the polaron problem also have imme-

diate consequences on the phase diagram of a three-
component Fermi gas with a small concentration n3 ≪
n1 ¼ n2 introduced to the third component of fermions.
When the polaronic atom-trimer state (6) is the ground
state, it will form an unpaired Fermi sea coexisting with
the condensed pairs of the other two components. Because
its many-body wave function is provided by jFSiAT ¼Q

εATðkÞ<μ3Ψ
†
3ðkÞjSFi with Ψ†

3ðkÞ being the creation oper-

ator of a single atom-trimer stateΨ†
3ðkÞjSFi≡ jATðkÞi, the

unpaired Fermi sea of atoms smoothly evolves into that of
trimers with Fig. 2 scanned from the upper left region to the
lower region. On the other hand, when the twofold
degenerate dimer states (8) are the ground state, they will
undergo the Bose-Einstein condensation and thus the three
different pair condensates coexist with no unpaired fer-
mions in the upper right side of the phase boundary in
Fig. 2. It is impressive to find that the polaron phase
diagram obtained here is already similar in essential
features to the schematic phase diagram proposed in
the case of equal populations for all three components
of fermions [15]. Our novel crossover wave function (6)
properly incorporating the polaronic atom-trimer continuity,

as well as the dimer wave function (8), will provide a useful
basis to further investigate the phase diagram of three-
component Fermi gases in more general situations, including
unequal masses, populations, and intercomponent inter-
actions, relevant to ultracold atom experiments [7–9,52].
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