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The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical
plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-
inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection
equation showing the existence of generalized magnetofluid connections that are preserved during the
dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor
that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion
to a much broader concept.

DOI: 10.1103/PhysRevLett.114.115003 PACS numbers: 52.27.Ny, 52.30.Cv, 95.30.Qd

In 1958, Newcomb [1] showed that in a plasma that
satisfies the ideal Ohm’s law, two plasma elements con-
nected by a magnetic field line at a given time will remain
connected by a field line for all subsequent times. This
occurs because the plasma moves with a transport velocity
that preserves the “magnetic connections” between plasma
elements. This is one of the most fundamental and relevant
ideas in plasma physics.
The conservation of the magnetic connections imposes

significant constraints on the plasma dynamics. Moreover,
it provides the very basis of central concepts in classical
(neither relativistic nor quantum) plasma physics, such
as magnetic field line motion, magnetic topology, and
magnetic reconnection. However, as the plasma energy
increases (both in laboratory [2–4] and astrophysical
contexts [5–7]), a generalization of these notions to the
relativistic regime is required. Indeed, in a relativisic
plasma different physical concepts must be taken into
account, such as the distinction between magnetic and
electric fields, which are reference-frame dependent.
The key ideas to advance in the understanding of the

magnetic connection notion in the relativistic regime were
first discussed by Newcomb [1], and then thoughtfully
investigated by Pegoraro [8]. In this latter work, using a
covariant formulation for the dynamical equations of an
ideal relativistic magnetohydrodynamic (MHD) plasma, it
is shown that the magnetic connections are preserved by
taking advantage of the antisymmetry of the electromag-
netic field tensor Fμν. In this case, the fundamental equation
underlying the connection concept takes the form [8]

d
dτ

ðdlμFμνÞ ¼ −ð∂νUβÞðdlαFαβÞ; ð1Þ

where d=dτ ¼ Uν∂ν is the convective derivative along the
moving plasma with four-velocity Uν and satisfying the
ideal Ohm’s law UνFμν ¼ 0. Here, dlμ is the four-vector

that connects two plasma elements. From Eq. (1) it follows
that if dlμFμν ¼ 0 initially, it will remain null for all

subsequent times. This generalizes the concept of magnetic
connections, which can be recovered if one consider
simultaneous events [8].
Despite these substantial advances in the understanding

of the relativistic plasma dynamics, one should recall that
there are plenty of nonideal effects that play crucial roles in
the dynamics of laboratory and astrophysical plasmas. In a
nonideal relativistic MHD plasma, effects such as thermal-
inertial, Hall, or current-inertia effects, modify the equation
of motion and Ohm’s law. Therefore, Eq. (1) is no longer
valid and the magnetic connections are not conserved
[2–4,9,10]. However, one might expect that in these
dissipationless cases the magnetic connections could be
replaced by more sophisticated “generalized connections.”
Along this work, we show that these generalized connec-
tions indeed exist.
We suggest that the nature of the new connections can be

understood through the emergence of a general antisym-
metric tensor field, which can be constructed as a combi-
nation of several physical quantities of the MHD plasma.
This insight is deeply inspired by the ideas proposed by
Bekenstein [11] and Mahajan [12], who have shown that
the helicity invariants characterizing the ideal plasma
dynamics can be generalized for relativistic plasmas by
realizing that fluid and electromagnetic fields couple in one
antisymmetric tensor. Similar ideas have been also success-
fully applied to develop relativistic theories of vorticity
generation [13–15], to study the topological constraints
imposed by the plasma helicity [16,17], and in the con-
struction of generalized vorticity invariants in the frame-
work of non-Abelian plasmas [18] and spinning quantum
plasmas [19].
In our analysis we intend to extend the connection

concept by considering physical contents beyond the ideal

PRL 114, 115003 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

0031-9007=15=114(11)=115003(5) 115003-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.115003
http://dx.doi.org/10.1103/PhysRevLett.114.115003
http://dx.doi.org/10.1103/PhysRevLett.114.115003
http://dx.doi.org/10.1103/PhysRevLett.114.115003


MHD description. To this aim, we consider a plasma
governed by the generalized relativistic MHD equations
recently derived by Koide [20]. These equations retain
many effects generally neglected in previous simpler
models [21,22], such as thermal-inertial effects, thermal
electromotive effects, current-inertia effects, and Hall
effects. The spacetime is assumed to be flat and defined
by the Minkowski metric tensor ημν ¼ diagð−1; 1; 1; 1Þ.
For an electron-ion plasma with density n, charge
density q ¼ ne, normalized four-velocity Uμ (such that
UμUμ ¼ −1), and normalized four-current density Jμ, the
equations that govern the dynamics of the plasma are the
continuity equation ∂μðqUμÞ ¼ 0, the generalized momen-
tum equation

∂ν

�
hUμUν þ μh

q2
JμJν

�
¼ −∂μpþ JνFμν; ð2Þ

and the generalized Ohm’s law

∂ν

�
μh
q
ðUμJν þ JμUνÞ − μΔμh

q2
JμJν

�

¼ 1

2
∂μΠþ qUνFμν − ΔμJνFμν þ qRμ: ð3Þ

Here, h denotes the MHD enthalpy density, while
Π ¼ pΔμ − Δp, with p ¼ pþ þ p− and Δp ¼ pþ − p−
denoting the total pressure and the pressure difference
between the fluids, respectively. We indicate with the
subscript þ (−) the positively (negatively) charged fluid.
The reduced (rest) mass can be recognized as
μ ¼ mþm−=m2, with m ¼ mþ þm−, whereas
Δμ ¼ ðmþ −m−Þ=m. The frictional four-force density
between the fluids is

Rμ ¼ −η½Jμ þQð1þ ΘÞUμ�; ð4Þ

where Θ is the thermal energy exchange rate from the
negatively to the positively charged fluid, η is the plasma
resistivity, and Q ¼ UμJμ. In Eq. (2), the current-inertia
effects arise from the left-hand side. Similarly, the thermal
electromotive effects appear as inertial effects corrections in
the left-hand side of Eq. (3), whereas in the right-hand side
it has taken into account the contributions of the thermal
electromotive force and the Hall effect.
As usual, Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic

field tensor (Aμ is the four-vector potential), which obeys
Maxwell’s equations

∂νFμν ¼ 4πJμ; ∂νF�μν ¼ 0: ð5Þ

Of course, F�μν ¼ ð1=2ÞϵμναβFαβ is the dual of Fμν, and
ϵμναβ indicates the Levi-Civita symbol.
Although the inclusion of different relativistic effects

complicates the MHD equations and a generalization of

Newcomb’s results seems difficult to achieve, a hint may be
gleaned directly from Pegoraro’s analysis [8], where the
antisymmetric form of tensors is what allows one to prove
the existence of preserved magnetic connections.
Therefore, the initial step of our search for generalized
connections consists in reformulating the generalized
Ohm’s law (3) in a form suitable to be antisymmetrized.
We will see (below) that to achieve this it is imperative to
introduce an antisymmetric tensor that unifies electromag-
netic and fluid fields.
First, using the continuity equation ∂μðqUμÞ ¼ 0, and

the charge conservation equation ∂μJμ ¼ 0 (coming from
Maxwell’s equations), we can rewrite the generalized
Ohm’s law (3) as

Jν∂ν

�
μh
q
Uμ

�
þ qUν∂ν

�
μh
q2

Jμ
�
− ΔμJν∂ν

�
μh
q2

Jμ
�

¼ 1

2
∂μΠþ qUνFμν − ΔμJνFμν þ qRμ: ð6Þ

Then, in analogy with the definition of the electromagnetic
field tensor, we construct an antisymmetric flow-field
tensor

Sμν ¼ ∂μ

�
h
q
Uν

�
− ∂ν

�
h
q
Uμ

�
; ð7Þ

and an antisymmetric current-field tensor

Λμν ¼ ∂μ

�
h
q2

Jν
�
− ∂ν

�
h
q2

Jμ
�
: ð8Þ

The antisymmetric tensor (7) represents the covariant
generalization of the fluid vorticity and it has been
previously introduced for relativistic hot plasmas in flat
spacetimes [12,13] and in general relativity [14]. In both of
the above tensors, the four-vectors hUν=q and hJν=q2 may
be viewed as the potentials (equivalent to the four-vector
potential Aμ) for the associated vorticity fields. With these
definitions Eq. (6) becomes

μJν∂μ

�
h
q
Uν

�
þ μqUν∂μ

�
h
q2

Jν
�

¼ 1

2
∂μΠþ qUνðFμν þ μΛμνÞ

− JνðΔμFμν − μSμν þ μΔμΛμνÞ þ qRμ: ð9Þ
To move forward in the antisymmetrization scheme, we
define the general transport four-velocity

Uμ ¼ Uμ −
Δμ
q

Jμ; ð10Þ

which allows us to put the generalized Ohm’s law in the
form
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μQ

�
1

q
∂μ

�
h
q

�
þ ∂μ

�
h
q2

��
þ μh

q2
∂μQ

¼ 1

2q
∂μΠþ UνðFμν þ μΛμνÞ þ μ

q
JνSμν þ Rμ: ð11Þ

Finally, we can manipulate the left-hand side of this
equation to reformulate the generalized Ohm’s law in the
concise and elegant form

Σμ ¼ UνMμν þ Rμ; ð12Þ

where we have defined the antisymmetric tensor

Mμν ¼ Fμν −
μ

Δμ
Wμν; ð13Þ

with the antisymmetric general flow-field tensor

Wμν ¼ Sμν − ΔμΛμν ¼ ∂μ

�
h
q
Uν

�
− ∂ν

�
h
q
Uμ

�
; ð14Þ

and Σμ ¼ ∂μ½μhQ=q2 þ μh=ðqΔμÞ� þ ðμ=ΔμÞχμ, with

χμ ¼ Uν∂ν

�
h
q
Uμ

�
þ ΔμQ

q
∂μ

�
h
q

�
−

Δμ
2μq

∂μΠ: ð15Þ

The tensor Mμν defined in Eq. (13) is a generalized
magnetofluid field tensor. This quantity represents an
effective field tensor that unifies the electromagnetic and
fluid forces (through Fμν and Wμν). Note that the tensor
Wμν contains the information of both the flow and current
fields. We will show later that the effective field tensorMμν

is crucial in revealing fundamental properties of the system.
This tensor is a more complex version of the unified
magnetofluid field tensor introduced in Ref. [12] for the
simpler case of one-species hot relativistic plasmas.
To find the evolution of the generalized magnetofluid

field tensor, we have to take the curl of Eq. (12). Applying
first ϵαβγμ∂γ and then ϵαβλϕ to Eq. (12), we obtain the
equation

dMλϕ

dτ
¼∂λUνMϕν−∂ϕUνMλν−

μ

Δμ
Zλϕþ∂λRϕ−∂ϕRλ;

ð16Þ

where now we have defined a general convective derivative
d=dτ ¼ Uν∂ν and introduced the antisymmetric tensor

Zλϕ ¼ ∂λχϕ − ∂ϕχλ: ð17Þ
Therefore, Eq. (16) is an antisymmetric form of the
generalized Ohm’s law.
Before proceeding further in showing the existence of

generalized magnetofluid connections, let us analyze the
physical content of the tensor field Zλϕ. To this aim, we
rewrite Eq. (2) with the help of the continuity equation as

Uν∂ν

�
h
q
Uϕ

�
¼ −

μ

q
Jν∂ν

�
h
q2

Jϕ
�
−
1

q
∂ϕpþ 1

q
JνFϕν;

ð18Þ
and then we use it to cast Eq. (17) in a sum of different
relativistic contributions to Ohm’s law

Zλϕ ¼ Zλϕ
h þ Zλϕ

p þ Zλϕ
H þ Zλϕ

c ; ð19Þ
where

Zλϕ
h ¼Δμ

�
∂λ

�
Q
q

�
∂ϕ

�
h
q

�
−∂ϕ

�
Q
q

�
∂λ

�
h
q

��
;

Zλϕ
p ¼∂λq

q2
∂ϕ

�
pþΔμ

2μ
Π
�
−
∂ϕq
q2

∂λ

�
pþΔμ

2μ
Π
�
;

Zλϕ
H ¼∂λ

�
1

q
JνFϕν

�
−∂ϕ

�
1

q
JνFλν

�
;

Zλϕ
c ¼−∂λ

�
μ

q
Jα∂α

�
h
q2

Jϕ
��

þ∂ϕ

�
μ

q
Jα∂α

�
h
q2

Jλ
��

: ð20Þ

The antisymmetric tensors Zλϕ
h and Zλϕ

p are due to the
thermal-inertial and thermal electromotive effects of the
MHD plasma. In particular, Zλϕ

p contains the pressure
contribution, which is absent if the equation of state of the
MHD plasma is such that p;Δp ∝ q. The contributions
coming from the Hall effect in the generalized Ohm’s law
are instead retained by the tensor Zλϕ

H , while Zλϕ
c appears

owing to current-inertia effects.
We are now able to demonstrate that when the frictional

four-force density Rμ is negligible, e.g., when the evolution
of the system is fast compared to the dissipation time
scale, there exist generalized magnetofluid connections
that are preserved during the dynamics of the relativistic
plasma.
With this aim in mind, we define a general displacement

four-vector Δxμ of a general element that is transported by
the general four-velocity

Δxμ

Δτ
¼ Uμ þ μ

Δμ
Dμ; ð21Þ

where Δτ is the variation of the proper time and Dμ is
a four-vector field that satisfies the equation

Mνϕ∂λDν −Mνλ∂ϕDν ¼ Zλϕ: ð22Þ
The four-vectorDμ contains all the (inertial-thermal-current-
Hall) information of Zμν, and it turns out to be essential
to prove the existence of the generalized connections.
Similarly to Ref. [8], we introduce the spacelike
event-separation four-vector dlμ ¼ x0μ − xμ between two
different elements. Two events are simultaneous in a
frame where dl0 ¼ 0. From the definition of dlμ and
the general four-velocity defined in Eq. (21), it follows that
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this four-vector is transported according to ðd=dτÞdlμ ¼
U 0μ þ ðμ=ΔμÞD0μ − Uμ − ðμ=ΔμÞDμ ¼ Uμðxα þ dlαÞ þ
ðμ=ΔμÞDμðxα þ dlαÞ − UμðxαÞ − ðμ=ΔμÞDμðxαÞ. There-
fore, the four-vector dlμ fulfills

d
dτ

dlμ ¼ dlα∂α

�
Uμ þ μ

Δμ
Dμ

�
: ð23Þ

With the help of Eq. (23), and neglecting the frictional four-
force density Rμ in Eq. (16), we can calculate

d
dτ

ðdlλMλϕÞ ¼ −∂ϕUνðdlλMλνÞ

þ μ

Δμ
dlλð∂λDνMνϕ − ZλϕÞ: ð24Þ

This equation, which is in terms of the new four-vector field
Dμ, can finally be rewritten using Eq. (22) as

d
dτ

ðdlλMλϕÞ ¼ −ðdlλMλνÞ∂ϕ

�
Uν þ

μ

Δμ
Dν

�
: ð25Þ

This is a crucial equation that reveals the existence of
generalized magnetofluid connections that are preserved
during the plasma dynamics. Indeed, from this equation it
follows that if dlλMλϕ ¼ 0 initially, then d=dτðdlλMλϕÞ¼0

for every time, and sodlλMλϕwill remain null at all times.Of
course, regularity properties of the velocity field (21) are
assumed.
The “magnetofluid connection equation” (25) general-

izes Eq. (1) for a relativistic electron-ion MHD plasma with
thermal-inertial, Hall, thermal electromotive, and current-
inertia effects. In particular, since

dlλMλϕ ¼ dlλFλϕ −
μ

Δμ
dlλWλϕ; ð26Þ

the generalized magnetofluid connections reduce to the
well-known magnetic connections if ðμ=ΔμÞdlλWλϕ → 0

and dl0 ¼ 0. On the contrary, in the case Fλϕ → 0,
Wλϕ → Sλϕ, and dl0 ¼ 0, the preserved connections are
those of the fluid vorticity.
Note that the four-vector connections (26) are trans-

ported by the general four-velocity Uμ þ ðμ=ΔμÞDμ. The
four-vector Dμ is fundamental to prove the existence of
the generalized connections and it can be found by solving
the differential equation

∂μDν ¼ N ϕν∂μχϕ; ð27Þ

obtained from Eq. (22). Here,N μν is the inverse of theMμν

matrix (MμαN αν ¼ δμν). The field N μν exists since Mμν

is nonsingular for nonideal MHD. To show this, it is
convenient to separate Eq. (12) into time and spatial
components. Defining the components of a generalized
electriclike field Ei ¼ M0i and a generalized magneticlike
field Bk ¼ ð1=2ÞϵijkMij, the determinant of Mμν is

∥M∥ ¼ ð~E · ~BÞ2. On the other hand, the time component

of Eq. (12) becomes ~U · ~E ¼ Σ0 − R0, whereas the spatial

components produce the equation U0~E þ ~U × ~B ¼ ~Σ − ~R,

implying that U0~E · ~B ¼ ð~Σ − ~RÞ · ~B. Therefore, as long as
~E · ~B ¼ ~Σ · ~B=U0 − ~R · ~B=U0 ≠ 0, the tensor N μν exists
(i.e., ∥M∥ ≠ 0). In the particular case of vanishing resis-

tivity, it can be ~E · ~B ≠ 0 due to the nonideal effects in ~Σ.
We also observe that in general, if there is simultaneity

between two events, the condition dlλMλϕ ¼ 0 can be
written as the vectorial conditions

d~l · ~E ¼ 0 and d~l × ~B ¼ 0: ð28Þ
On the other hand, when the events are not simultaneous,
Pegoraro has shown that simultaneity can be recovered
resetting the time [8]. This can be achieved projecting the
new trajectories of the fluid elements in a 3D space by
changing dlμ → dl0μ ¼ dlμ þ ðUμ þ μHμ=ΔμÞdλ, such
that in this new reference frame dl00 ¼ 0. This allows us
to have unaltered generalized connections whenever Hμ

fulfills the generalized Ohm’s law (12). Thus, a possible
solution can be expressed as Hα ¼ ðΔμ=μÞN μαΣμ ¼
N μαχ

μ þN μα∂μðΔμhQ=q2 þ h=qÞ. Notice the resem-
blance to the Dα field, which can be calculated from
Eq. (27) as

Dα ¼ N μαχ
μ þ εα; ð29Þ

with ∂μεν ¼ ∂μN νβχ
β.

Our procedure has led us to a completely general result
and of course also nonrelativistic systems are covered. As
an illustration, and for the sake of simplicity, let us consider
a nonrelativistic Hall MHD plasma. For this case, we
neglect the thermal-inertial and thermal electromotive
effects. In the nonrelativistic limit JμWμν ¼ Oðv2Þ and
Zλϕ

c is negligible. Thus, the only contribution of the
Zλϕ field is Zλϕ

H , implying that χϕ ¼ JμFϕμ=q ≈
JμMϕμ=q because of our approximations. Therefore,
Eq. (27) becomes ∂μDν ≈ −∂μðJν=qÞ þN ϕν∂μFϕαJα=q.
A simple analytical solution of this equation may be
obtained for quasiuniform electromagnetic fields. Under
this approximation, we have Dν ≈ −Jν=q. Substituting this
solution into Eq. (21), we can see that in this limit, the
general vectorial velocity

~U þ μ

Δμ
~D ≈ ~v −

1

q

�
Δμþ μ

Δμ

�
~J ð30Þ

preserves the topology of the nonrelativistic limit (with no
thermal-inertial effects) of the generalized magneticlike field

~B ≈ ~B −
μ

Δμ
∇ ×

�
~v −

Δμ
q

~J

�
: ð31Þ
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Therefore, in the considered limit the preserved connections
are related to the rotation of the electron fluid canonical
momentum, as shown by Pegoraro et al. [23]. We also note
that it is common to assume mþ ≫ m−, which yields μ ≈
m−=mþ ≪ 1 and Δμ ≈ 1. In this case the transport velocity
(30) becomes the electron velocity, while the preserved
connections are simply the magnetic connections.
A difference of the theory developed here with the ideal

MHD connection theorem [1,8] is worth mentioning. In the
ideal case, the magnetic connection concept is well defined
when j~Ej < j~Bj (where Uν is timelike). On the contrary,
when j~Ej > j~Bj, which may occur in extreme astrophysical
environments [24,25], the MHD approximation breaks
down since Uν becomes spacelike [1]. In the nonideal
case treated here, the same analysis is not directly appli-
cable. The field strengths to be compared in the nonideal

system are j~Ej and j~Bj instead of j~Ej and j~Bj. In this
case, the generalized Ohm’s law (12) gives that
~U ¼ U0ð~E × ~BÞ=j~Bj2 þ ð~U · ~B=j~Bj2Þ~B þ ~B × ~Σ, when the
frictional four-force density is neglected. Therefore, since

the fields ~B and ~E depend on the general transport four-
velocity, it is not straightforward to establish when the

general transport velocity ~U is timelike or spacelike.
However, as long as Uν is timelike, the generalized
magnetofluid connection concept is well defined. In this
case it is also possible to have generalized magneticlike

field connections ~B in a frame where the magnetic field is
null (~B ¼ 0) because of the current and velocity fields.
The generalization of the connection concept and of the

connection equation to nonideal relativistic MHD plasmas
provides a strong theoretical framework for investigating
high-energy plasmas. In this extended framework, the
generalized magnetofluid field tensor (13) and the general
four-velocity (21) play the role that the electromagnetic
field tensor and the fluid four-velocity have in the ideal
relativistic MHD description. Thereby, when dissipation-
less nonideal effects are included, the preserved connec-
tions are no longer related to the electromagnetic field
tensor Fμν but to the magnetofluid field tensor Mμν. This
implies that it is possible to have reconnection of the
magnetic field lines ~B while the generalized magneticlike

field lines ~B remain conserved (in a frame where dl0 ¼ 0).
The conservation of these generalized magnetofluid

connections profoundly affects the relativistic plasma
dynamics by forbidding transitions between configurations
with different magnetofluid connectivity. Also, because of
these constraints, they could be crucial to understand the
formation of small scale structures resulting from a com-
plex nonlinear dynamics. Therefore, it would not be
surprising that the ideas presented in this Letter will
allow us to gain a more detailed comprehension of
relativistic phenomena in plasmas. Furthermore, from the
computational point of view, these ideas can be applied to

verify the accuracy of relativistic MHD numerical simu-
lations, using the magnetofluid connection equation (25) as
guidance for reliability.
Finally, the results presented here tell us that the

connection idea, conceived first by Newcomb, could be
a broader concept that permeates the entire energy scale in
plasma physics.
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