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Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-
selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space
charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has
been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability
for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-
osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed
employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent
studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we
show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical
potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we
suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of
instability in concentration polarization.
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In recent years, electro-osmotic instability in concen-
tration polarization at a charge-selective solid has attracted
considerable interest on the part of both theoreticians and
experimentalists [1–8]. Commonly, this instability has been
attributed to nonequilibrium electro-osmosis (EO) related
to the extended space charge [9–13], which develops in the
course of concentration polarization at the limiting current
[14]. One reason for this attribution was the realization that
for a perfectly permselective (charge-selective) solid, [18],
equilibrium EO cannot yield instability. Secondly, it has
been shown that nonequilibrium EO can [19]. In the early
studies, the assumption of perfect permselectivity was used
for the sake of simplicity [9,13,19]. Subsequent studies of
various time-dependent and nonlinear features of electro-
osmotic instability [2,3,5,20] continued to do so, recogniz-
ing that the extended space charge lying at the basis of
nonequilibrium EO is essentially identical for a perfect and
nonperfect interface [21]. Here we report that relaxing the
assumption of perfect permselectivity allows for equilib-
rium instability. Possible experimental tests for determining
the equilibrium or nonequilibrium nature of hydrodynamic
instability in concentration polarization in any particular
setup are suggested.
dc ionic current in a binary electrolyte passing through a

permselective interface (electrode, ion exchangemembrane,
micro-nano-channel junction) is a basic element of many
electrochemical engineering or microfluidic processes, such
as electrodeposition, electrodialysis, or protein preconcen-
tration [22,23]. Such current passage is diffusion limited in
the sense that it induces a decrease of electrolyte concen-
tration towards the interface, the phenomenon known as the
ionic concentration polarization. A common expression of
it is a characteristic voltage-current curve with a segment in

which the current nearly saturates at some plateau value, the
limiting current, corresponding to the nearly vanishing
interface concentration. This segment of the voltage-current
curve is usually followed by a region of a relatively rapid
increase of electric current with voltage—the so-called
overlimiting conductance (OLC) regime. The mechanism
ofOLC remained unexplained for a long time. Only recently
was it shown that in open systems OLC is due to the
destruction of the diffusion layer by a microscale vortical
flow which spontaneously develops as a result of instability
of concentration polarization near the limiting current and
provides an additional ionic transport mechanism yielding
OLC [4,7,8,19,20,24,25]. This flow may be driven by the
electric force acting upon both the space charge of a
nanometers-thick interfacial electric double layer (EDL)
and the residual space charge of the stoichiometrically
electroneutral bulk. A sliplike fluid flow induced by the
former is known as EO, whereas the flow induced by the
latter is referred to as bulk electroconvection. There are two
regimes of EO that correspond to different states of the EDL
and are controlled by the nonequilibrium voltage drop
(overvoltage) across it [13]: equilibrium EO and nonequili-
brium EO, or EO of the second kind [4].While both regimes
result from the action of a tangential electric field upon the
space charge of the EDL, the former relates to the charge
of the equilibrium EDL, whereas the latter relates to the
extended space charge of the nonequilibrium EDL that
develops in the course of concentration polarization near the
limiting current [10–12,14].
The theory of equilibrium EO at a permselective interface

was developed by Dukhin and Derjaguin [26]. An essential
component of this theory is accounting for polarization of
the EDLby the applied tangential electric field, resulting in a
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lateral pressure drop in the double layer, owing to the lateral
variation of the Maxwell stress. This yields for equilibrium
EO slip velocity, instead of the common Helmholtz-
Smoluchowski formula u ¼ −ζE, the expression [13,14]

u ¼ ζ

�
φx þ

cx
c

�
þ cx

c
½4 ln 2 − 4 lnðeζ=2 þ 1Þ�: ð1Þ

Here, φ is the dimensionless electric potential (scaled
with the thermal potential, kT=e), c is the dimensionless
electrolyte concentration (scaled with some typical concen-
tration c0), x is the dimensionless tangential coordinate
(scaled with some typical macroscopic length, e.g., the
membrane width), and ζ is the dimensionless electric poten-
tial drop between the interface and the outer edge of the EDL.
The peculiarity of Eq. (1) is that, for an ideally permselective
cation exchange membrane maintained at a fixed electric
potential, the electrochemical potential of counterions in the
membrane, ln cþ φ ¼ const, is constant, and so it is, in
equilibrium conditions, at the outer edge of the EDL. In other
words, ∂c=∂x ¼ −c∂φ=∂x, and for ζ → −∞, Eq. (1) yields

u ¼ −4 ln 2φx: ð2Þ
Hydrodynamic stability of the quiescent concentration polari-
zation with a limiting equilibrium EO slip condition (2) was
studied by Zholkovskij et al. [18], who found that 1D
concentration polarization was stable. So it was concluded
that with a perfectly permselective interface no bulk electro-
convective instability was feasible for a low molecular
electrolyte [13,27]. In brief, the physical reason for this is
that for an ideal interface, the stabilizingDonnan contribution
to the electric potential perturbation, resulting from the
concentration perturbation by the flow, dominates the corre-
sponding destabilizingOhmic contribution. Recognizing this
balance hasmotivated the current reexamination of the role of
perfect charge selectivity of the interface. (For a detailed
discussion of bulk electroconvection versus equilibrium EO
and the extent to which the two are equivalent, see Ref. [14].)
On the other hand, it was shown that the nonequilibrium slip
related to the extended space charge did yield instability
[9,13,19]. This was the reason why, since its prediction in
1999 [9] till now, hydrodynamic instability in concentration
polarization was attributed to nonequilibrium EO and was so
studied [1–6,13].
It is the purpose of this Letter to show that any deviations

from constancy of the electrochemical potential of counter-
ions at the outer edge of EDL makes equilibrium instability
possible. Nonconstancy of the counterionic electrochemical
potential may result either from nonideal permselectivity of
the interface (nonideally permselective nanoslot or ion-
exchange membrane), addressed in this Letter, or from a
finite rate of electrode reactions (e.g., in cathodic deposition).
This Letter is structured as follows.We begin by formulating
a three-layer model for a membrane flanked by two concen-
tration polarized diffusion layers whose stability under no-
slip (bulk electroconvection–no-slip setup) and equilibrium

slip condition (1) (bulk electroconvection–EO setup) we
analyze. Next, the results of a linear stability analysis in this
model are presented, followed by the results of illustrative
numerical simulations in the full nonlinear model.
Let us consider an infinite 2D cation-exchange mem-

brane, −∞ < x < ∞, 0 < y < 1, flanked by two diffusion
layers, −∞ < x < ∞, −L < y < 0 and −∞ < x < ∞,
1 < y < 1þ L, of a univalent electrolyte with concentra-
tion c0 maintained at the outer boundary of diffusion layers
[see Fig. 1(b)]. This three-layer system is modeled by the
following boundary-value problem nondimensionalized in
a natural manner [19]:

∂c�
∂t ¼ −∇ · j�; ð3Þ

j� ¼ −c�∇μ� þ Pevc�; μ� ¼ ln c� � φ: ð4Þ

Here, c� is the concentration of positive and negative ions
and Pe is the material Peclet number [14,19]. Electro-
neutrality conditions in the enriched, −L < y < 0, and in
the depleted, 1 < y < 1þ L, diffusion layers and the
membrane, 0 < y < 1, read, respectively,

cþ ¼ c− ¼ C; −L < y < 0; 1< y < 1þL; ð5Þ

cþ ¼ c− þ N ¼ Cþ N
2
; 0 < y < 1. ð6Þ

(a)

(b)

FIG. 1. (a) Scheme of three-layer setup, dashed lines are
schematic plots of the average ionic concentration CðyÞ.
(b) Scaled voltage-current dependence L ¼ 1, (1) N ¼ 0.1,
(2) N ¼ 1, (3) N ¼ 10, dashed line corresponds to perfectly
permselective interface. Inset: Same plots for unscaled voltage-
current dependencies.
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Here, N is the dimensionless fixed charge density in the
membrane (scaled by ec0) and C ¼ ðcþ þ c−Þ=2 is the
average ionic concentration. Let us neglect the fluid flow
in the enriched diffusion layer and in the membrane,
v ¼ uiþ wj≡ 0, −L < y < 1, and determine it in the
depleted diffusion layer from the Stokes-continuity
equations,

∇2v −∇pþ∇2φ∇φ ¼ 0; ∇ · v ¼ 0: ð7Þ
At the outer boundary of the depleted diffusion layer,
we apply the reservoir conditions for velocity,
uyðx; 1þ LÞ ¼ 0, wðx; 1þ LÞ ¼ 0, along with prescribing
the concentration and the electric potential at the outer
edges of both diffusion layers:

Cjy¼−L;Lþ1 ¼ 1; φjy¼−L ¼ −V; φjy¼Lþ1 ¼ 0: ð8Þ

We complete the formulation by prescribing continuity of
the ionic electrochemical potentials, μ�, and normal ionic

fluxes through the membrane–solution interfaces, y ¼ 0; 1
and the slip condition (1) at the membrane-depleted dif-
fusion layer interface, y ¼ 1. The main control parameters
are the dimensionless voltage V, the dimensionless width of
the diffusion layers L, and N. The latter is the measure of
membrane charge selectivity, a perfect membrane corre-
sponding to N ≫ 1. For these conditions, the counterion
concentration in the membrane equals N, which, combined
with a fixed electric potential, amounts to fixing the
electrochemical potential of counterions employed in the
previous one-layer models [9,13,19]. In the three-layer
model of this study, reducing N from infinity (perfect
membrane) to a practical range,N > 1, amounts to allowing
for lateral variations of the electrochemical potential of
counterions in the membrane. The flow in the enriched
compartment and the possible EO flow across themembrane
are disregarded for simplicity, recognizing that hydrody-
namic instability in concentration polarization is entirely
due to large electric fields in the depleted diffusion layer.
The quiescent 1D steady-state solution to the problem

(1), (3)–(8) has been computed analytically in terms of
Lambert functions. In Fig. 1(b) we present the computed
voltage-current dependencies for variousN (current density I
is defined as I ¼ jþ − j−; in the figures, I is the normal
component of I averaged over the interface). We note that
whereas the voltage-current curves computed for different N

(a) (b)

(d)

(c)

FIG. 2. (a) Neutral stability curves in scaled voltage V�–wave
number k plane (above the curve–instability), L ¼ 1: N ¼ 2ð1Þ,
N ¼ 3ð2Þ, N ¼ 5ð3Þ, N ¼ 10ð4Þ. Solid line stands for bulk
electroconvection–EO setup and dashed line stands for bulk
electroconvection–no-slip setup. Inset: Same for unscaled voltage
V. (b) Scaled critical voltage for bulk electroconvection–EO
setup V�

cr versus N for L ¼ 1. Inset: Same for Vcr. (c) Instability
threshold on the scaled V�-I� curve (bulk electroconvection–EO
setup) for L ¼ 1, N ¼ 2ð1Þ, N ¼ 3ð2Þ, N ¼ 5ð3Þ, N ¼ 10ð4Þ.
Arrows mark variation of threshold with decreasingN (increasing
bulk concentration in dimensional terms) for equilibrium bulk
electroconvection–EO instability and nonequilibrium EO insta-
bility. Inset: Same four points on the V-I curves. (d) Instability
threshold in the dimensional voltage-electrolyte concentration
plane for nonequilibrium (1) and equilibrium (2) electroconvec-
tive instability. The membrane width is 100μ, L ¼ 1, the
concentration of fixed charges in the membrane is 4M.

(a)

(c)

(d)

(b)

FIG. 3. (a) Steady-state V�-I� dependence L ¼ 1: N ¼ 2ð1Þ,
N ¼ 5ð2Þ, N ¼ 10ð3Þ. N ¼ 2: black squares mark transition to
time-dependent regime. (b) Same for unscaled voltage-current
dependence. (c),(d) Concentration distribution (darker color
corresponds to lower concentration) and flow streamlines
computed for L ¼ 1: N ¼ 2ð1Þ, N ¼ 5ð2Þ, N ¼ 10ð3Þ.
(c) V� ¼ 1.05V�

cr and (d) V� ¼ 1.5V�
cr. The rectangle corresponds

to one spatial period of steady-state solution for critical wave
number kcr, 0 < x < 2π=kcr.
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strongly differ due to the decrease of membrane permselec-
tivity with the decrease of N [inset of Fig. 1(b)],
upon a suitable scaling, the scaled I� − V� curves collapse.
Here, I� ¼ I=I0, V� ¼ V=V0, where I0 is, e.g., one half
of the limiting current Ilim andV0 is the correspondingvoltage.
The results of the linear stability analysis of the quiescent

1D steady state are presented in Fig. 2. The region above the
neutral-stability curves plotted in Fig. 2(a) corresponds to
instability. Whereas for unscaled voltage the unstable
portion of the V-k plane shrinks exponentially upon the
decrease of membrane permselectivity [inset of Fig. 2(a)],
for scaled voltage the unstable portion of the voltage–wave
number phase plane expands with decreasing N. The
dependence of critical voltage on N is depicted in Fig. 2(b).
Increase of the scaled critical voltage with N is a particular
feature of equilibrium instability, potentially useful for
the experimental identification of the OLC mechanism.
To emphasize this, on the scaled voltage-current curve we
mark four points corresponding to the onset of instability for
a decreasing sequence of N (in dimensional terms, decreas-
ingN is tantamount to increasing bulk solute concentration),
Fig. 2(c), along with the corresponding plot in the unscaled
V-I plane [inset of Fig. 2(c)]. We note that, whereas for a
perfectly permselective membrane and its related nonequi-
librium EO instability, the increase of bulk electrolyte
concentration, resulting in the decrease of the dimensionless

Debye length, yields an increase of the scaled threshold
voltage [13], for equilibrium electroconvective instability,
the increase of bulk concentration yields a decrease of N
accompanied by a decrease of the scaled threshold voltage
V�, Fig. 2(c). As an additional illustration, in Fig. 2(d) we
mark in the dimensional voltage-electrolyte concentration
plane the parameter ranges in which, based on the linear
stability analysis, each instability mechanism is expected to
dominate (the nonequilibrium instability range is evaluated
based on Ref. [13]). It is observed that, for a relatively
high concentration of the fixed charges in the membrane,
4M, the equilibrium instability is expected to set on prior to
the nonequilibrium one for electrolyte concentrations
above 0.1M.
The linear stability analysis is complemented by numeri-

cal solution of nonlinear problem (1), (3)–(8) illustrated
in Fig. 3. The transition to overlimiting conductance in
Figs. 3(a) and 3(b) fits the results of the linear stability
analysis. We note the supercritical character of the tran-
sition, as opposed to the subcritical one, accompanied by
hysteresis in the nonequilibrium case for a realistic param-
eter range [8,20]. Black squares mark the transition to
oscillations turning chaotic upon further increase of voltage
for a poorly selective membrane, N ¼ 2. The large sepa-
ration between the onset of instability and the transition to
unsteady regime is another “signature” of the equilibrium

2 2.25 2.5 2.75 3
0

0.25

0.5

0.75

y

x

(a)

(c1)

(c4) (c5) (c6)

(c2) (c3)

(b)
FIG. 4. (a) Periodic oscillations of I
for N ¼ 2, L ¼ 1, V ¼ 44.78.
(b) One period of current oscillation.
Six square points mark six time
instants for which streamlines are
drawn. (c) Streamlines for six time
instants, drawn for half a spatial
period: (c1)–(c3) correspond to
points 1–3 in (b), increase of vortex
asymmetry with time; (c4) corre-
sponds to point 4 in (b), birth of an
additional vortex in the upper left
corner; (c5) corresponds to point 5 in
(b), growth and eventual dominance
of the new vortex; (c6) corresponds
to point 6 in (b), disappearance of the
original vortex with the resulting
reversal of the sense of rotation.
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instability as opposed to the nonequilibrium one. This
unsteady regime is illustrated in Fig. 4, in which we depict
the emerging periodic current oscillations and their under-
lying flow pattern for half a spatial period symmetry cell.
The oscillation cycle emerging at the transition includes
the phase of gradual growth of vortex asymmetry,
Figs. 4(c1)–(c3), culminating in the birth of an additional
pair of vortices near the interface stagnation point at the
ascending side of the original vortices, Fig. 4(c). The
growth of these emerging vortices, their eventual domi-
nance, and disappearance of the original vortices yield a
reversal of the sense of rotation in the symmetry cell,
Fig. 4(c1) versus Fig. 4(c6).
To conclude, we point out that equilibrium bulk electro-

convection–EO instability rather than its nonequilibrium
counterpart may be accountable for the reported effects of
depleted membrane surface modification by surfactants and
polyelectrolyte deposition upon the onset of OLC [28].
Recently, this type of effect was analyzed in terms of
nonequilibrium electro-osmotic instability [29].
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