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We report a new thermal boundary layer equation for turbulent Rayleigh–Bénard convection for Prandtl
number Pr > 1 that takes into account the effect of turbulent fluctuations. These fluctuations are neglected
in existing equations, which are based on steady-state and laminar assumptions. Using this new equation,
we derive analytically the mean temperature profiles in two limits: (a) Pr≳1 and (b) Pr ≫ 1. These two
theoretical predictions are in excellent agreement with the results of our direct numerical simulations for
Pr ¼ 4.38 (water) and Pr ¼ 2547.9 (glycerol), respectively.
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Turbulent Rayleigh–Bénard convection (RBC) [1–5],
consisting of a fluid confined between two horizontal
plates, heated from below and cooled from above, is a
system of great research interest. It is a paradigm system for
studying turbulent thermal convection, which is ubiquitous
in nature, occurring in the atmosphere and the mantle of
Earth as well as in stars like our Sun. Convective heat
transfer is also an important problem in engineering
and technological applications. The state of fluid motion
in RBC is determined by the Rayleigh number
Ra ¼ αgΔH3=ðκνÞ and the Prandtl number Pr ¼ ν=κ.
Here, α denotes the isobaric thermal expansion coefficient,
ν the kinematic viscosity and κ the thermal diffusivity of the
fluid, g the acceleration due to gravity, Δ the temperature
difference between the bottom and top plates, and H the
distance between the plates.
In turbulent RBC there are viscous boundary layers

(BLs) near all rigid walls and two thermal BLs, one above
the bottom plate and one below the top plate. We denote the
thicknesses of the viscous and thermal BLs by l and λ,
respectively. Both viscous and thermal BLs play a critical
role in the turbulent heat transfer of the system and, in
particular, λ is inversely proportional to the heat transport.
Grossmann and Lohse (GL) [6,7] developed a scaling
theory of how the Reynolds number Re, determined by the
mean large-scale circulation velocity U0 above the viscous
BL, and the dimensionless Nusselt number Nu, measuring
the heat transport, depend on Ra and Pr for moderate Ra.
The theory makes explicit use of the result l=H ∝ Re−1=2

with the proportionality constant depending only on Pr.
This result follows from the assumptions that the BLs are
laminar and their mean profiles, averaged over time, are
described by the Prandtl-Blasius-Pohlhausen (PBP) theory
[8–10] for steady-state forced convection above an infinite
weakly heated plate. Although the GL theory gives perfect
agreement with the heat transport measurements, the

assumption that the BLs are described by PBP theory is
not fulfilled. Systematic deviations of the mean velocity
and temperature profiles from the PBP predictions have
been reported both in experiments and in direct numerical
simulations (DNS) [11–15]. These deviations remain even
after a dynamical rescaling procedure [16] that takes into
account the time variations of λ is used, and increase with
growing Ra and decreasing Pr. An extension of the PBP
approach to the Falkner-Skan-Pohlhausen one [17–19],
which accounts for a nonparallel mean large-scale circu-
lation velocity above the viscous BL [20] and a nonzero
pressure gradient within the BLs, gives better approxima-
tions of l and λ [19] and is promising for studying mixed
convection [21,22], but does not lead to better predictions
of the mean temperature profiles in RBC. For large Pr, the
thermal BL is nested within the viscous one. Taking the
velocity field to be a simple shear flow with constant shear
rate, Shraiman and Siggia [23] obtained results for the
mean temperature profile and the relation between the
heat flux and shear rate. Their mean temperature profile
coincides with the PBP prediction for Pr ≫ 1. Ching [24]
generalized their work to study shear flows with a position-
dependent shear rate, and obtained mean temperature
profiles in terms of two constants that are functions
of λ, the shear rate, and their spatial derivatives. Good
agreement of the derived profile with the actual ones can
be obtained only when these two constants are treated as
free fitting parameters with no solid theoretical support.
The observed deviations between the actual profiles

and the existing predictions from laminar BL models are
the effects of turbulent fluctuations. As Ra increases, the
present understanding is that the thermal BLs would
eventually become turbulent such that a clear distinction
between the BLs and the bulk of the flow ceases to exist.
In this asymptotic state, known as the ultimate regime,
logarithmic mean temperature profiles are predicted [25]
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based on the idea of eddy thermal diffusivity [10]. Recently,
logarithmic mean temperature profiles in the turbulent bulk
region have also been reported for moderate Ra [26]. The
separation of the region close to the plate into a viscous
sublayer and a fluctuating logarithmic layer [25,26] gives a
good description of the mean temperature profile in these
two separate subregions but a universal function predicting
correctly the mean temperature profile throughout the
whole region, from the plate to the edge of the bulk region,
remains lacking.
In this Letter, we report a new thermal BL equation for

turbulent RBC that takes into account the effect of the
turbulent fluctuations, which are neglected in the existingBL
equations based on steady-state and laminar assumptions.
Using this equation, we derive analytically the mean temper-
ature profiles for Pr≳1 and Pr ≫ 1. We have performed
DNS for Pr ¼ 4.38 (water) and Pr ¼ 2547.9 (glycerol) with
Ra between 107 and 1010 in a cylindrical domain of aspect
ratio one, using well-tested finite-volume codes. The
DNS for Ra up to 109 were conducted using the RBC
version [27] of the code [28]. The simulations for higher
Ra were obtained using our new code GOLDFISH, which
features a versatile operator approach, a highmodularity, and
fully parallel I=O, allowing one to flexibly change the order
of integration and to extend the code to more complicated
problems. It was validated against [27] for Ra ¼ 108. The
computational grids used resolveKolmogorov andBatchelor
scales in the whole domain [29]. Our theoretical predictions
are in excellent agreement with our DNS results.
We consider the fluid flow along an infinite horizontal

heated plate and assume that far away from the plate there
exists a constant horizontal mean velocity, the wind, along
a certain preferential direction. We set up the coordinate
system such that the x direction is along the wind and z
direction is vertical away from the plate. As the dependence
of the mean flow on the other horizontal direction is weak
when the plate is large, we consider a two-dimensional
flow that depends on x and z only. Denote the velocity field
by uðx; z; tÞx̂þ vðx; z; tÞẑ and the temperature field by
Tðx; z; tÞ, where x̂ and ẑ are the unit vectors in the
corresponding directions and t is the time. Close to that
plate the equation of motion of temperature is governed by

∂tT þ u∂xT þ v∂zT ¼ κ∂2
zT; ð1Þ

where we have used the BL approximation of j∂2
xTj ≪

j∂2
zTj. Applying Reynolds decomposition, we can write the

velocity and temperature fields as the sums of their long
time averages, denoted byUðx; zÞ, Vðx; zÞ, andΘðx; zÞ, and
their fluctuations defined by

uðx; z; tÞ ¼ Uðx; zÞ þ u0ðx; z; tÞ; ð2Þ
vðx; z; tÞ ¼ Vðx; zÞ þ v0ðx; z; tÞ; ð3Þ

Tðx; z; tÞ ¼ Θðx; zÞ þ θ0ðx; z; tÞ: ð4Þ

Here,Uðx; zÞ → U0 as z → ∞. Taking a long time average,
denoted by h·it, of (1), we obtain

U∂xΘþ V∂zΘþ ∂xhu0θ0it þ ∂zhv0θ0it ¼ κ∂2
zΘ: ð5Þ

Assuming that j∂xhu0θ0itj ≪ j∂zhv0θ0itj and using the eddy
thermal diffusivity κt ¼ κtðx; zÞ, defined as

hv0θ0it ≡ −κt∂zΘ; ð6Þ

one obtains the following BL equation:

U∂xΘþ ðV − ∂zκtÞ∂zΘ ¼ ðκ þ κtÞ∂2
zΘ: ð7Þ

We seek a similarity solution of the BL equation (7) with
respect to the similarity variable ξ, defined by

ξ ¼ z=λðxÞ; ð8Þ

where λðxÞ is the local thickness of the thermal BL. Let the
stream function Ψðx; zÞ for the mean velocity be

Ψðx; zÞ ¼ U0λðxÞψðξÞ; ð9Þ

such that U ¼ ∂zΨ and V ¼ −∂xΨ, and Θðx; zÞ be

Θ ¼ Tbot − ðΔ=2ÞθðξÞ: ð10Þ

Here Tbot is the temperature of the bottom plate. The
boundary conditions for ψ and θ are

ψð0Þ ¼ 0; ψξð0Þ ¼ 0; ψξð∞Þ ¼ 1; ð11Þ

θð0Þ ¼ 0; θξð0Þ ¼ 1; θð∞Þ ¼ 1: ð12Þ

Here the subscript ξ denotes the derivative with respect to ξ.
Using Eqs. (8)–(10) in Eq. (7) one obtains the following
dimensionless BL equation

ð1þ κt=κÞθξξ þ ðAþ BψÞθξ ¼ 0; ð13Þ

A ¼ ðκtÞξ=κ; B ¼ U0λλx=κ: ð14Þ

and the subscript x denotes the derivative with respect to x.
For the similarity solution to exist, B must be constant,
independent of x, therefore λðxÞ ∝ ffiffiffi

x
p

. In the BL approxi-
mation, l ∝ λ and thus l ∝

ffiffiffi
x

p
as in PBP theory and is

therefore consistent with the assumption used in GL scaling
theory [6] for moderate Ra. We write

λðxÞ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
νx=U0

p
; ð15Þ

and thus B ¼ Pr f2=2, where f ¼ fðPrÞ is some function of
Pr that is fixed by the requirement θξð0Þ ¼ 1.
In the case where fluctuations are ignored, hv0θ0it ¼ 0,

κt ¼ 0, then Eq. (13) reduces to the PBP equation. It was
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derived in Shishkina et al. [18] that the PBP equation can
be written as

θξξ þ ωΓωð1þ ω−1Þξω−1θξ ¼ 0; ð16Þ
with ω ¼ 2 for Pr ≪ 1 and ω ¼ 3 for Pr ≫ 1 and thus all
PBP temperature profiles for any Pr are bounded by

θðξÞ ¼
Z

ξ

0

exp ½−Γωð1þ ω−1Þχω�dχ; ð17Þ

with 2 ≤ ω ≤ 3, where Γ is the gamma function. To take
into account the fluctuations, we need to know κtðξÞ. A
common approach for fully turbulent BLs is κt ∝ ξ [10],
consequently leading to logarithmic temperature profiles.
For moderate Ra, such log profiles are also found but only
in the turbulent bulk, which is at a relatively large distance
from the plate. In the vicinity of the plate, κt behaves rather
as κt ∝ ξ3 (see Fig. 1). Indeed, from the continuity equation
for the fluctuating velocities, ∂xu0 þ ∂zv0 ¼ 0, and that θ0,
v0, and ∂xu0 vanish at the plate, we obtain for z ¼ 0,

hv0θ0it ¼ ∂zhv0θ0it ¼ ∂2
zhv0θ0it ¼ 0: ð18Þ

Using the relations (6) and (8), Eq. (18) implies

κtð0Þ ¼ ðκtÞξð0Þ ¼ ðκtÞξξð0Þ ¼ 0: ð19Þ
Therefore, the following approximation

κt=κ ≈ a3ξ3 ð20Þ

holds for small ξ with some dimensionless constant a.
Substituting Eqs. (14) and (20) into Eq. (13), one obtains
the following BL equation for the temperature:

ð1þ a3ξ3Þθξξ þ ð3a3ξ2 þ BψÞθξ ¼ 0: ð21Þ

For large Pr, the thermal BL is nested within the viscous
BL such that λ < l and we can approximate U ∝ z within
the thermal BL. Together with Eqs. (8)–(12), one obtains

ψ ≈ bξ2; b ¼ 0.5ψξξð0Þ: ð22Þ

Equations (22) and (21) lead to the following new thermal
BL equation for large Pr > 1:

ð1þ a3ξ3Þθξξ þ ð3a3 þ bBÞξ2θξ ¼ 0: ð23Þ

The solution of Eq. (23) is

θðξÞ ¼
Z

ξ

0

ð1þ a3η3Þ−cdη ð24Þ

with c ¼ ðbB=3a3Þ þ 1. Note that the constants a and c are
related by the requirement θð∞Þ ¼ 1, which gives

a ¼ Γð1=3ÞΓðc − 1=3Þ
3ΓðcÞ : ð25Þ

The order of magnitude of a can be estimated as follows.
Averaging Eq. (5) in the x direction, denoted by h·ix, and
integrating it in the vertical direction from 0 to z, and using
Eq. (6) and the definition of the Nusselt number

Nu≡ ðhvTitx − κ∂zhTitxÞ=ðκΔ=HÞ; ð26Þ

one obtains

hVΘix ¼ hðκ þ κtÞ∂zΘix þ NuκΔ=H: ð27Þ

Close to the plate, the order of magnitude of the left-hand
side of Eq. (27) is much smaller than Nu κΔ=H; hence, in
this region the following approximation holds:

hðκ þ κtÞ∂zΘþ κΔ=ð2λÞix ≈ 0; ð28Þ

where we have used the definition

λðxÞ≡ −∂zΘjz¼0=ðΔ=2Þ ð29Þ

to write Nu ¼ hH=ð2λÞix. Approximating that Eq. (28)
holds locally, without the averaging in x, in the region far
away from the two vertical walls, we get

κ=ðκ þ κtÞ ∼ −ð2λ=ΔÞ∂zΘ ¼ θξ ð30Þ

(see Fig. 2). Our DNS show that at the edge (ξ ¼ 1) of
the thermal BL, 0.36 < θξ < 0.65 holds for all Pr studied.
From Eqs. (20) and (30) for ξ ¼ 1 one obtains that
0.52 < a3 < 1.76, with a ∼ 1.2 for Pr≳1 and a ∼ 0.8

FIG. 1 (color online). Normalized eddy thermal diffusivity
jκt=κj, calculated for κt ¼ ðVΘ − hvTitÞ=∂zΘ, and then averaged
over horizontal cross sections, obtained in the DNS for Pr ¼ 4.38
and Ra ¼ 107 (diamonds), 108 (triangles), 109 (circles), and 1010

(pluses) together with a fit for Ra ¼ 109 (solid line). It can be
seen that close to the plate, κt=κ ∝ ξ3 holds. The dashed line
shows the slope ∝ ξ that causes the logarithmical temperature
profiles in the core part of the domain for sufficiently large Ra.
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for Pr ≫ 1. Thus we have c ∼ 1 for Pr∼1 and c ∼ 2
for Pr ≫ 1.
The analytical solution Eq. (24) of the BL equation (23)

that satisfies Eq. (12) for c ¼ 1 reads

θ ¼
ffiffiffi
3

p

4π
log

ð1þ aξÞ3
1þ ðaξÞ3 þ

3

2π
arctan

�
4π

9
ξ −

1ffiffiffi
3

p
�
þ 1

4
;

a ¼ 2π=ð3
ffiffiffi
3

p
Þ ≈ 1.2; ð31Þ

while that for c ¼ 2 is

θ ¼
ffiffiffi
3

p

4π
log

ð1þ aξÞ3
1þ ðaξÞ3 þ

3

2π
arctan

�
8π

27
ξ −

1ffiffiffi
3

p
�

þ ξ

3ð1þ ðaξÞ3Þ þ
1

4
; a ¼ 4π=ð9

ffiffiffi
3

p
Þ ≈ 0.8: ð32Þ

Thus, all temperature profiles for Pr > 1 lie between
Eq. (31) (Pr≳1) and Eq. (32) (Pr ≫ 1).
Next we compare our predictions (31), (32) with the

DNS results. At each of the two Pr (4.38 and 2547.9)
studied, the mean temperature profiles almost collapse for
the different Ra (107 − 1010 for Pr ¼ 4.38 and 107 − 109

for Pr ¼ 2547.9). Generally the profiles depend very
weakly on Ra (see Fig. 3). For the range of Ra studied,
the DNS profiles for Pr ¼ 4.38 are in perfect agreement
with the predicted profile Eq. (31) for Pr≳1, while the DNS
profiles for Pr ¼ 2547.9 are in perfect agreement with the
predicted profile Eq. (32). On the other hand, the PBP
predictions for Pr ¼ 2547.9 and Pr ¼ 4.38 almost coincide
with the PBP prediction for Pr ≫ 1 and lie well above the
corresponding DNS profiles.
In summary, we have derived a new thermal BL equation

for turbulent RBC for Pr > 1, using the idea of an eddy
thermal diffusivity, which close to the plate is shown to

depend on the cubic power of the distance from the plate.
We have solved the equation to obtain two analytical mean
temperature profiles for Pr≳1 and Pr ≫ 1, respectively,
and demonstrated that they are in excellent agreement with
the DNS profiles. The general dependence of the coef-
ficient a and thus the temperature profile (24) on Pr, Ra,
and the geometrical characteristics of the convection cell
will be explored in future studies.
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