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The manipulation of acoustic wave propagation in fluids has numerous applications, including some in
everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such
as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves,
known as “topological edge states,” has recently been demonstrated. These are inspired by the electronic
edge states occurring in topological insulators, and possess a striking and technologically promising
property: the ability to travel in a single direction along a surface without backscattering, regardless of the
existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and
propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids.
The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic
devices, may have novel applications for acoustic isolators, modulators, and transducers.
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Since the 1980s, it has been known that the bands of
certain insulators are “topologically nontrivial,” i.e., not
smoothly deformable into the bands of a conventional
insulator. Such systems, collectively referred to as
“topological insulators” [1–3], can exhibit edge states that
propagate in a single direction along the edge of a
two-dimensional sample. These states are “topologically
protected,” meaning that they are tied to the topology of
the underlying bands and cannot be eliminated by pertur-
bations, and are hence immune to backscattering from
disorder or shape variations. Some years ago, Haldane
and Raghu [4] predicted that a similar phenomenon can
arise in the context of classical electromagnetism [4–13],
which was subsequently borne out by experiments on
microwave-scale magneto-optic photonic crystals [6] and
other photonic devices [8,10,11].
In order to realize topological edge states using sound,

we begin with a spatially periodic medium (in order to have
band structures), and introduce a mechanism that breaks
time-reversal symmetry (to allow for one-way propaga-
tion). A periodic acoustic medium, sometimes called a
“phononic crystal” (PC) [14], is commonly realized by
engineering a structure whose acoustic properties (elastic
moduli and/or mass density) vary periodically on a scale
comparable to the acoustic wavelength. As for T breaking,
although traditional acoustic devices lack an efficient
mechanism for accomplishing this, a recent breakthrough
[15] has shown that strong T breaking can be achieved
in a “meta-atom” containing a ring of circulating fluid.
Although these developments have direct device applica-
tions as acoustic diodes [16] and acoustic circulators [15],
they do not have the topological protection against defects

possessed by the topological edge states we will develop.
We utilize the design concept by incorporating circulating
fluid elements into a PC structure. As shall be seen,
the resulting acoustic band structure is topologically non-
trivial, and maps theoretically onto an integer quantum
Hall gas [1]—the simplest version of a two-dimensional
(2D) topological insulator.
We note also that several authors have studied topologi-

cal vibrational modes in mechanical lattices [17–19].
The present system, by contrast, involves sound waves
in continuous fluid media, which is considerably more
relevant for existing acoustic technologies.
A schematic of the proposed system is shown in

Fig. 1(a). It is a triangular lattice of lattice constant a,
where each unit cell consists of a rigid solid cylinder (e.g., a
metal cylinder) with radius r1, surrounded by a cylindrical
fluid-filled region of radius r2. The remainder of the unit
cell (i.e., the region of r > r2) consists of a stationary fluid,
separated from the fluid in the cylindrical region (i.e., the
region of r1 < r < r2) by a thin impedance-matched layer
at radius r2. (This layer can be achieved using a thin sheet
of solid material that is permeable to sound.) The central
cylinder rotates along its axis with angular speed Ω, which
produces a circulatory flow in the surrounding fluid in the
region of r1 < r < r2. (We will not consider the possibility
of Taylor vortex formation [20] caused by large Ω in
experiments because we here focus on a 2D model and the
Taylor vortex does not contribute an effective flux through
the xy plane.) We assume that the fluid velocity is much
slower than the speed of sound (Mach number of less
than 0.3). The motion of the fluid can be described by a
circulating “Couette flow” distribution [20]: the velocity
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field points in the azimuthal direction, with component
vθ ¼ −½Ωr21=ðr22 − r21Þ�rþ ½Ωr21r22=ðr22 − r21Þ�ð1=rÞ, where
r is measured from the origin at the axis of the cylinder.
This angular velocity is equal to Ω at radius r ¼ r1, and
zero at radius r ¼ r2.
The propagation of sound waves in the presence of such

a steady-state nonhomogenous velocity background is
described in Refs. [21,22]. Assuming that the viscosity

and heat flow are negligible, the waves obey a “sound
master equation”

1

ρ
∇ · ρ∇ϕ − ð∂t þ ~v0 · ∇Þ 1c2 ð∂t þ ~v0 ·∇Þϕ ¼ 0; ð1Þ

where ρ is the fluid density, c is the speed of sound, and
~v0 is the background fluid velocity (i.e., the Couette flow
distribution in the region of r1 < r < r2 and stationary
fluid in the region of r > r2, where r is measured
from the center of each unit cell). The relation between
the velocity potential ϕ and the sound pressure p is
p ¼ ρð∂t þ ~v0 · ∇Þϕ.Wemodel the surface of each cylinder
as an impenetrable hard boundary by setting ~n ·∇ϕ ¼ 0,
where ~n is the surface normal vector. We restrict our
attention to time-harmonic solutions with frequency ω
and neglect second order terms as j~v0=cj2 ≪ 1. With a
change of variables Ψ ¼ ffiffiffi

ρ
p

ϕ the master equation can be
rewritten as

½ð∇− i~AeffÞ2 þ Vðx; yÞ�Ψ ¼ 0; ð2Þ
where the effective vector and scalar potentials are

~Aeff ¼ −ω~v0ðx; yÞ
c2

; ð3Þ

Vðx; yÞ ¼ − 1

4
j∇ ln ρj2 − 1

2
∇2 ln ρþ ω2

c2
: ð4Þ

Evidently, Eq. (2) maps onto the Schrödinger equation for a
spinless charged quantum particle in nonuniform vector and
scalar potentials. For nonzero Ω, the inner boundary of the
Couette flow contributes positive effective magnetic flux,
and the rest of the Couette flow contributes negative
effective magnetic flux; the net magnetic flux, integrated
over the entire unit cell, is zero. The acoustic system thus
behaves like a “zero field quantum Hall” system [23] and is
periodic in the unit cell.
It is worth mentioning that a similar approach to

construct an effective magnetic vector potential for classical
wave propagation has been discussed by Berry and
colleagues [24,25]. These authors showed that an irrota-
tional (“bathtub”) fluid vortex exhibits a classical wave
front dislocation effect, analogous to the Aharanov-Bohm
effect. Here, we advance this insight by applying the flow
model to a PC context, so that the effective magnetic vector
potential gives rise to a topologically nontrivial acoustic
band structure.
From Eq. (1), we can calculate the acoustic band

structures using the finite element method. For simplicity,
we assume the fluids involved are air. The results, with
Ω ¼ 0 and Ω ≠ 0, are shown in Fig. 1(b) (the lattice
constant a is set as 0.2 m). For Ω ¼ 0 [red curves in
Fig. 1(b)], the acoustic band structure exhibits a pair of
Dirac points at the corner of the hexagonal Brillouin zone,

FIG. 1 (color online). A two-dimensional acoustic topological
insulator and its band structure. (a) Triangular acoustic lattice
with lattice constant a. a ¼ 0.2 m in the following calculation.
Inset: unit cell containing a central metal rod of radius r1 ¼ 0.2a,
surrounded by an anticlockwise circulating fluid flow (flow
direction indicated by red arrows) in a cylinder region of radius
r2 ¼ 0.4a. (b) Band structures of the acoustic lattice without the
circulating fluid flow (red curves, Ω ¼ 2π × 0 rad=s) and with
fluid flow (blue curves, Ω ¼ 2π × 400 rad=s). In the gapped
band structure, the bands have Chern number �1 (blue labels).
Left inset: enlarged view of Dirac cone. Right lower inset: the
first Brillouin zone. (c) Frequency splitting as a function of the
angular velocity of the cylinder in each unit cell. The degeneracy
at the Dirac point with frequency ω0 ¼ 0.577 × 2πca=a (992 Hz)
is removed for Ω ≠ 0.
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at frequency ω0 ¼ 0.577 × 2πca=a (992 Hz), where ca is
the sound velocity in air.
For Ω ≠ 0 the circulating air flow produces a dramatic

change in the band structure [blue curves in Fig. 1(b)].
Here, we set the angular velocity of the inner rods to be
Ω ¼ 2π × 400 rad=s (achievable with miniature electric
motors). The Dirac point degeneracies are lifted, producing
a finite complete band gap. The frequency splitting at the
zone corners as a function of Ω is plotted in Fig. 1(c).
The ratio of the operating frequency to the band gap, which
is an estimate for the penetration depth of the topological
edge states in units of the lattice constant, is on the order of
ω=δω ≈ 10 for the range of angular velocities plotted here.
For Ω ¼ 2π × 400 rad=s, the band gap ranges from 914 to
1029 Hz, corresponding to a relatively narrow bandwidth
of 115 Hz.
Each acoustic band can be characterized by a topological

invariant, the Chern number [4]. The Berry connection
and Chern number of the nth acoustic band can be defined
as follows:

~An ¼ ihϕnkj∇~kjϕnki; ð5Þ

Cn ¼
1

2π

Z Z
BZ
ðdka ∧ dkbÞ∇~k ×

~An: ð6Þ

We have numerically verified that the two bands in
Fig. 1(b), split by the T breaking, have Chern numbers
of �1. The principle of “bulk-edge correspondence” then
predicts that, for a finite PC, the gap between these two
bands is spanned by unidirectional acoustic edge states,
analogous to the electronic edge states occurring in the
quantum Hall effect [26].
To confirm the existence of these topologically protected

acoustic edge states, we numerically calculate the band
structure for a 20 × 1 supercell [27] (a ribbon that is 20 unit
cells wide in the y direction and infinite along the
x direction). As shown in Fig. 2(a), for Ω¼2π×400 rad=s
the band gap contains two sets of edge states, which
are confined to opposite edges of the ribbon and have
opposite group velocities.
Figures 2(b) and 2(c) show the propagation of these edge

states in a finite (34 × 14) lattice. In these simulations, the
upper edge of the PC is enclosed by a sound-impermeable
hard boundary (e.g., a flat metal surface), in order to
prevent sound waves from leaking into the upper half
space; absorbing boundary conditions are applied to the
sides. A point sound source with midgap frequency ω0 is
placed near the upper boundary. For Ω ¼ 2π × 400 rad=s,
this excites a unidirectional edge state that propagates to the
left along the interface [Fig. 2(b)]. If the sign of angular
velocity were reversed, the edge state would be directed to
the right (not plotted). The field distribution for a reduced
angular velocity Ω ¼ 2π × 200 rad=s [Fig. 2(c)] shows an

edge state with a longer penetration depth because of a
narrower band gap.
Because of the lack of backward-propagating edge modes,

the presence of disorder cannot cause backscattering.
Figure 3(a) shows an acoustic cavity located along the
interface; the incident wave flows through the cavity, and
excites localized resonances within the cavity, but does not
backscatter. Figure 3(b) shows a Z-shape bend connecting
two parallel surfaces at different y; again, the acoustic edge
states are fully transmitted across the bend. Finally, Fig. 3(c)
shows a 180-deg bend, which allows acoustic edge states to
be guided from the top of a sample to the bottom of the
sample; note that the left boundary in this sample is a zigzag
boundary, which supports one-way edge states with different
dispersion relations.
Our proposed system should be quite practical to realize.

Similar effects can be achieved with alternative designs
featuring circulatory fluid velocity distributions: e.g.,
having azimuthally directed fans in each unit cell [15] or
stirring with a rotating disc on the top plate [28]. The effect
could be largely tunable from audible to even ultrasonic
frequencies by appropriately scaling down the lattice
constant or practically operating at higher band gaps with
a larger Chern number. Acoustic devices based on these
topological properties can be useful for invisibility from

FIG. 2 (color online). Acoustic one-way edge states.
(a) Dispersion of the one-way acoustic edge states (red curves)
occurring in a finite strip of the acoustic lattice, for
Ω ¼ 2π × 400 rad=s. The left and right red curves correspond
to edge states localized at the bottom and top of the strip. (b),(c)
The normalized acoustic pressure p for a left-propagating
acoustic edge state at frequency ω0 ¼ 0.577 × 2πca=a (992 Hz)
for Ω ¼ 2π × 400 rad=s (b) and Ω ¼ 2π × 200 rad=s (c). Lattice
parameters are the same as in Fig. 1.
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sonar detection, one-way signal processing regardless of
disorders, and environmental noise control, which will
greatly broaden our interest in military, medical, and
industrial applications.
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FIG. 3 (color online). Demonstration of the robustness of
acoustic one-way edge states against disorder. Topological
protection requires the waves to be fully transmitted through
an acoustic cavity (a), a Z-shape bend along the interface (b), and
a 180-deg bend (c). The operating frequency is ω0 ¼ 0.577 ×
2πca=a (992 Hz) and Ω ¼ 2π × 400 rad=s. Lattice parameters
are the same as in Fig. 1.
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