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Because of their low energy content, microwave signals at the single-photon level are extremely
challenging to measure. Guided by recent progress in single-photon optomechanics and hybrid
optomechanical systems, we propose a multimode optomechanical transducer that can detect intensities
significantly below the single-photon level via adiabatic transfer of the microwave signal to the optical
frequency domain where the measurement is then performed. The influence of intrinsic quantum and
thermal fluctuations is also discussed.
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Introduction.—The microwave frequency domain of the
electromagnetic spectrum is the stage of a wealth of
phenomena, ranging from the determination of the quan-
tum energy levels of superconductor nanostructures to the
rotational modes of molecules and to the characterization
of the cosmic microwave background. Several detection
schemes sensitive to microwave radiation at the single-
photon level have been demonstrated. Examples include
semiconductor quantum dots in high magnetic field [1],
circular Rydberg atoms in cavity QED setups [2–4], and
superconducting qubits in circuit QED [5,6]. An alternative
approach involves the use of linear amplifiers [7]. These
devices allow the reconstruction of average amplitudes [5]
and correlation functions [8] and may operate both as
phase-preserving (insensitive) [9] and phase-sensitive
[10,11] amplifiers, but they require an integration over
many events to achieve a sizable signal.
Even though there have been proposals and experiments

to realize a photon multiplier in the microwave regime
[12–14], no general purpose efficient single-photon detec-
tor has been developed so far, as photon energies in that
frequency domain are in the milli-electron volt range,
3 orders of magnitude smaller than in the visible or near-
infrared spectral regions. On the other hand, in the optical
frequency domain a variety of ultrasensitive detectors have
been developed over the past 60 years. This suggests that
an alternative route for the detection of feeble microwave
signals is via their conversion to the optical frequency
domain. Photonic front-end microwave receivers based on
the electro-optical effect [15] and atomic interfaces based on
electromagnetically induced transparency have exploited
nonlinear conversion to this end [16,17]. The main limi-
tations in sensitivity are the small strength of the interaction
and the fluctuations of the optical driving fields.
Recent advances in nano- and optomechanics offer an

attractive approach to engineer interactions of light and

mechanics that achieve that goal via the radiation pressure
force; see Ref. [18] for recent reviews. Several theoretical
proposals have considered the optomechanically mediated
quantum state transfer between microwave and optical
fields [19–22] and have emphasized the potential of hybrid
systems as quantum information interfaces [23–26], in
which case state transfer fidelity is of particular interest.
Developments of particular relevance include the exper-
imental realization of coherent conversion between micro-
wave and optical field based on a hybrid optomechanical
setup [27–29]. The present work has the different goal
to convert the mean intensity of a feeble, narrow band
microwave signal to a signal at an optical frequency where
detection can proceed by traditional methods.
One key aspect of this proposed detector is that it relies

on an off-resonant, multimode process. This is motivated
by the need to manage and minimize the thermal mechani-
cal noise, as well as to circumvent the effect of the
fluctuations of the driving electromagnetic fields required
to ensure a strong enough optomechanical coupling. These
sources of noise can be significantly reduced by (i) working
in a far off-resonant regime with respect to the mechanics,
(ii) using pumping fields that drive ancillary cavity modes
different from those at the signal frequencies, for both
microwave and optical, and (iii) exploiting the polariton
modes of the cavity-mechanics system to perform the
frequency conversion of the signal via a modulation of
the detuning of the optical pump.
System.—The proposed sensor is composed of a

mechanical oscillator optomechanically coupled to both
a microwave and an optical multimode resonator; see
idealized setup in Fig. 1.
Consider first the microwave cavity. To avoid the noise

connected with the pumping field while still maintaining a
large optomechanical coupling strength, we adopt a multi-
mode configuration where a strong optomechanical coupling
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is provided by an auxiliary field at frequency ωbp different
from that of the signal to be detected; see Fig. 1(b). This
three-mode optomechanical interaction is described by the
Hamiltonian [30–32]

V3m ¼ ℏgb0ðb̂p þ b̂Þ†ðb̂p þ b̂Þðĉþ ĉ†Þ; ð1Þ
where gb0 is the single microwave photon optomechanical
coupling constant. We assume that ωbp is resonant with a
longitudinal cavity mode, while the signal field b̂, assumed
to be extremely weak, is slightly detuned from another mode
of frequency ωb. In the displaced picture for b̂p and ĉ,
b̂p → βp þ b̂p and ĉ → C þ ĉ, the Hamiltonian (1) becomes

V3m;eff ¼ ℏGbðb̂þ b̂†Þðĉþ ĉ†Þ þ ℏxcgb0ðb̂pb̂† þ b̂†pb̂Þ
þ ℏGbðb̂p þ b̂†pÞðĉþ ĉ†Þ: ð2Þ

The first term is the usual linearized optomechanical
coupling between the signal mode b̂ and phonon mode ĉ
with strength Gb ¼ βpgb0. We assume that the pump field is
phase locked so that Gb is real and positive. Its fluctuations
feed into the system as noise through the second and the
third terms of V3m;eff , which arise from the scattering and the
optomechanical coupling of the pumped mode, respectively.
The second term, proportional to the steady position quad-
rature of the phonon field, xc ¼ C þ C�, can be safely
neglected under the condition jxcj ≪ jβpj, which is easily
realized [33] in the mirror-in-the-middle geometry of
Fig. 1. Finally, the third term results in contributions to
the system dynamics at a frequency that differs from the first
term by �ðωb − ωbpÞ. This difference is of the order of the

free spectral range of the cavity (for longitudinal modes) so
that it can easily be filtered out in a manner familiar from
heterodyne detection. For the narrow band detection scheme
considered here, it is therefore sufficient to keep only the first
term in the Hamiltonian (2).
Following a similar argument for the optical fields, the

effective Hamiltonian for the full system becomes

H ¼ ℏωmĉ†ĉ − ℏΔaâ†â − ℏΔbb̂
†b̂

þ ℏGaðâþ â†Þðĉþ ĉ†Þ þ ℏGbðb̂þ b̂†Þðĉþ ĉ†Þ; ð3Þ

where â, b̂, and ĉ are the (displaced) annihilation operators
for the optical, microwave, and mechanical modes with
corresponding frequencies ωa, ωb, and ωm. The optical and
microwave cavity-pump detunings are Δa ¼ ωap − ωa þ
xcga0 and Δb ¼ ωbp − ωb þ xcgb0, respectively, with ωap

and ωbp the frequencies of the optical and microwave
pumps. Ga and Gb are the effective optomechanical
coupling strength set by the steady amplitude of the
pumped ancillary optical and microwave cavity modes.
Note that Ga;b are of opposite signs and the equilibrium
position of the mechanical resonator is set by the relative
strength of the two pumps, so that the microwave drive
needs to have a significantly stronger light flux than the
optical pump.
In the resonant situation Δa ¼ Δb ¼ −ωm, an effective

interaction follows from performing the rotating wave
approximation, which gives HI ¼ ℏGaðâĉ† þ ĉâ†Þþ
ℏGbðb̂ĉ† þ ĉb̂†Þ. IfGa andGb are appropriately modulated
in time, the system then adiabatically follows a super-
position of cavity modes â and b̂ without any population
of the mechanical mode ĉ (dark mode) [19,20]. In contrast,
for the off-resonant case considered here, Δa;b ≠ ωm, the
microwave and optical fields are coupled by a three-level
Raman-like interaction via the mechanical mode.
Normal mode picture.—To discuss the microwave-to-

optical conversion process in this effective three-mode
configuration, it is convenient to switch to a normal mode
(polariton) representation of the system [39]. After removing
a constant term, the Hamiltonian (3) can be recast in
the diagonal form H ¼ ℏωAÂ

†Âþ ℏωBB̂
†B̂þ ℏωCĈ

†Ĉ,
where Â, B̂, and Ĉ are the boson annihilation operators
for the normal mode excitations. In general, these are
superpositions of the optical, microwave, and mechanical
modes. Figure 2 shows their frequencies ωA;B;C as functions
of the optical detuning Δa. At the mechanical resonance,
Δa ¼ −ωm, the degeneracy between the optical photon
and the phonon is lifted by the optomechanical interaction,
with an energy splitting of the order of 2Ga. A second
avoided crossing occurs at the resonance between optical and
microwave photons,Δa ¼ Δb, with a splitting of the order of
4GaGb=ωm resulting from the indirect coupling between
the electromagnetic modes via the mechanical mode.

FIG. 1 (color online). (a) Dual-cavity optomechanical system.
(b) Sketch of the heterodynelike pumping scheme with the
microwave signal and the driving field near resonant with cavity
mode b and ancilliary mode bp, respectively. Similarly in the
optical side.
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We focus on the region close to the microwave-optical
resonance framed in Fig. 2. On the left-hand side, Δa < Δb

and jΔa − Δbj ≫ 4jGaGbj=ωm, the polariton B̂ describes a
microwavelike excitation, with ωB ∼ −Δb and B̂ ∼ b̂, while
for Δa > Δb, the polariton becomes optical-like B̂ ∼ â and
annihilates an excitation of frequency ωB ∼ −Δa. The
opposite holds for the polariton A, which is optical-like
for Δa < Δb and microwavelike on the other side of the
resonance. The polariton C remains phononlike in this
whole region, indicating that the dynamics of the mechani-
cal excitation is decoupled from that of the electromagnetic
fields.
Conversion process.—When Δa is slowly switched

from the left-hand to the right-hand side of the resonance,
the polariton B adiabatically evolves from the microwave-
like excitation to the optical-like excitation while con-
serving its population, hB̂†ðtÞB̂ðtÞi ≈ hb̂†ðt0Þb̂ðt0Þi, where
hb̂†ðt0Þb̂ðt0Þi accounts for both the input signal field to be
measured and the microwave cavity noise. Likewise, the
polariton A, which is initially optical-like, evolves into a
microwavelike excitation while maintaining its population
hÂ†ðtÞÂðtÞi ≈ hâ†ðt0Þâðt0Þi ¼ 0, where the last equality
holds if the optical mode is initially in a vacuum, a
condition easy to satisfy.
The adiabaticity of the transfer requires that Δa be

switched at a rate much slower than the interband sepa-
ration, 1=τ ≪ 4jGaGbj=ωm, where τ is the switching time.
In addition, it is also necessary that this operation occurs
in a time short compared to the inverse decay rates of the
polariton modes, which are combinations of the cavity
decay rates κa;b and the mechanical damping rate γ. (This
condition also ensures that α and β remain constant during
the switch of Δa.)

We describe the detection protocol as a time-gated three-
step process. First, during a “receiving” time window τr
that lasts until t0, the optical detuning is fixed at Δa < Δb,
with jΔa − Δbj ≫ 4jGaGbj=ωm, and the microwave cavity
captures a narrow band signal that is stored in the mode b.
During that time the optical mode a is in a vacuum and
the microwave-optical field interaction is negligible due to
their large mismatch in frequency. This is followed by a
“transfer” time interval τ starting at t0 during which Δa is
switched to Δb at a rate

1=κa;b ≫ τ ≫ ωm=4jGaGbj; ð4Þ

resulting in the signal being transferred into an optical field
without any significant coupling to the external reservoirs.
Finally, during the detecting time window τd > t0 þ τ, the
interaction is quenched and the cavities couple with their
environment, thus releasing the optical output field that can
be measured by standard methods.
Input-output dynamics.—The analysis of the conversion

of the microwave signal to the optical field can be
performed in terms of Heisenberg-Langevin equations of
motion ∂tû ¼ −i½û; Ĥ�=ℏ − κuûþ ffiffiffiffiffiffiffi

2κu
p

ûin, where û are
the annihilation operators for the bare modes fâ; b̂; ĉg, κu
are their dissipation rates (with κc ≡ γ), and ûin account for
the associated noise operators and input fields. In the
absence of input fields the nonvanishing noise correlations
are hûinðtÞû†inðt0Þi ¼ ðn̄u þ 1Þδðt − t0Þ and hû†inðtÞûinðt0Þi ¼
n̄uδðt − t0Þ, where n̄u ¼ 1=½expðℏωu=kBTuÞ − 1�, Tu being
the temperature of the thermal reservoir of mode u. For the
optical field n̄a ≈ 0 in practice.
In the far off-resonant case ωm ≫ jΔa;bj; jGa;bj; κa;b; γ,

we adiabatically eliminate the phonon mode ĉ by inserting
its formal solution ĉ ≈ ½−Gaðâþ â†Þ − Gbðb̂þ b̂†Þ�=ωm
into the equations for the modes a and b while retaining the
mechanical noise term and neglecting the memory effect.
The interaction between the microwave and optical modes
is then described by the equation

∂tâ ¼ ðiΔ0
a − κaÞâþ i

2G2
a

ωm
â† þ iG0ðb̂þ b̂†Þ þ

ffiffiffiffiffiffiffi

2κa
p

â0in;

ð5Þ
where G0 ¼ 2GaGb=ωm, and similarly for mode b with
a ↔ b [33].
In the far off-resonant case, we must keep the antirotat-

ing terms in the optomechanical interaction when adiabati-
cally eliminating the mechanics. This results in a squeezing
contribution to the dynamics of a and b with the original
detuning becoming Δ0

a;b ¼ Δa;b þ 2G2
a;b=ωm and

â0in ¼ âin − iGa

ffiffiffiffiffi

γ

κa

r

�

Z

t

0

eð−iωm−γÞðt−t0Þĉinðt0Þdt0 þ H:c:

�

;

ð6Þ

FIG. 2 (color online). Eigenfrequencies of the normal modes
(polaritons) as functions of optical detuning Δa=ωm for the case
−Ga=ωm ¼ Gb=ωm ¼ 0.1 and Δb=ωm ¼ −0.4. Dashed lines:
noninteracting energies of the bare modes. We have framed
the part of the spectrum spanned by Δa during the conversion
process.
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and similarly for b0in with a → b. When we focus on the
signal fields of narrow linewidth around cavity modes, the
noise autocorrelation functions approximately become
hâ0inðtÞâ0†inðt0Þi¼ðn̄aþmaþ1Þδðt−t0Þ and hâ0inðtÞâ0inðt0Þi ¼
−maδðt − t0Þ, with ma ¼ ðG2

aγ=ω2
mκaÞð2n̄c þ 1Þ, with also

the appearance of cross-correlations characteristic of a
squeezed two-mode reservoir, hâ0inðtÞb̂0†inðt0Þi¼mabδðt−t0Þ
and hâ0inðtÞb̂0inðt0Þi ¼ −mabδðt − t0Þ, where mab ¼
ðGaGbγ=ω2

m
ffiffiffiffiffiffiffiffiffi

κaκb
p Þð2n̄c þ 1Þ [33]. The output fields are

similarly modified, with the indices “in” replaced by “out”
and ĉout ¼ −ĉin in this far off-resonant case. Note that the
weak coupling assumption jGa;bj=ωm ≪ 1, which allows
the adiabatic elimination of the mechanical mode, also
implies small values for the squeezing parameters ma, mb,
and mab.
The polariton operators Â, B̂ and their corresponding

noise operators Âin, B̂in are readily obtained via a
Bogoliubov transformation of the bare modes in the absence
of dissipation. Assuming for simplicity κa ¼ κb ¼ κ, one
then readily finds [40]

∂tÂ ¼ ðiωA − κÞÂþ
ffiffiffiffiffi

2κ
p

Âin; ð7Þ

and similarly for mode B, with A → B.
Determining the conversion between the microwave

signal and the optical field requires in general to solve
the full Heisenberg-Langevin equations with time-dependent
coefficients. But if one assumes perfect adiabaticity, one can
use instead a much simplified effective two-sided cavity
model. To single out the effect of the varying frequencies
ωA;BðtÞ, we focus on the slowly varying envelopes
~A ¼ Âe−iωAt and ~B ¼ B̂e−iωBt. We also introduce a new
operator for the symmetric superposition of the cavity
modes, V̂ ¼ ð ~Aþ ~BÞ= ffiffiffi

2
p

. From Eq. (7) we then have

∂tV̂ ¼ −κV̂ þ ffiffiffi

κ
p

~Ain þ
ffiffiffi

κ
p

~Bin; ð8Þ

reminiscent of the situation of a two-sided cavity [41] but
with input field operators depending on Δa. Specifically, in
the first stage of the detection sequence, t < t0, we have
~Ain ≈ â0ine

iΔ0
at and ~Bin ≈ b̂0ineiΔ

0
bt, while in the third step,

t > t0 þ τ, ~Ain and ~Bin are simply exchanged. In the inter-
mediate second step, the adiabatic, essentially dissipation-
free, evolution results in small phase shifts for the envelope
operators, proportional to ∂tωA and ∂tωB for ~A and ~B,
respectively. In the case of perfect adiabaticity, we may
neglect these shifts and thus obtain V̂ðt0Þ ¼ V̂ðt0 þ τÞ [33].
Summarizing, the full evolution of V̂ for the three-step

detection sequence is approximately described by the
equation

∂tV̂ ¼ −κV̂ þ ffiffiffi

κ
p

â0ine
iΔ0

at þ ffiffiffi

κ
p

b̂0ineiΔ
0
bt: ð9Þ

With the boundary conditions of the two-sided cavity,
â0outeiΔ

0
at þ â0ine

iΔ0
at ¼ ffiffiffi

κ
p

V̂ and b̂0outeiΔ
0
bt þ b̂0ineiΔ

0
bt ¼ ffiffiffi

κ
p

V̂
[41], this equation can be solved in the frequency domain
to give

â0outðω − Δ0
aÞ ¼

κb̂0inðω − Δ0
bÞ − iωâ0inðω − Δ0

aÞ
κ þ iω

: ð10Þ

Perfect conversion, â0outð−Δ0
aÞ ¼ b̂0inð−Δ0

bÞ, occurs for
ω ¼ 0. Remembering that the optical and the microwave
operators are expressed in rotating frames with respect to
the pumping frequencies ωap and ωbp, this corresponds to
the case where the frequency of the input microwave fields
is ωs ¼ ωb − xcgb0 − 2G2

b=ωm and the frequency of the
output optical field is ωo ¼ ωa − xcga0 − 2G2

a=ωm.
We introduce the mean photon numbers of the optical

and microwave modes,

n̄o ¼
Z

dωjgðωÞj2hâ†outðω − Δ0
aÞâoutðω − Δ0

aÞi;

n̄s ¼
Z

dωjgðωÞj2hb̂†inðω − Δ0
bÞb̂inðω − Δ0

bÞi; ð11Þ

where the mode filter functions gðωÞ are sharply peaked
around ω ¼ 0. By assuming detection and reception time
windows ðτd; τrÞ ≫ 1=κ [42,43], we find

n̄o ¼ n̄s þ
ðG2

b þG2
aÞγ

ω2
mκ

ð2n̄c þ 1Þ; ð12Þ

where we have taken into account the modified noise
correlation of the optical and microwave cavities, and the
effects of the mechanical noise are merged into the second
term on the right-hand side. This is the central result of this
Letter.
Sensitivity.—Ignoring technical noise and assuming that

the final optical detector is well characterized and has near
unit quantum efficiency, we concentrate on the intrinsic
sensitivity of the three-step conversion sequence. It is
characterized primarily by the microwave-to-optical con-
version efficiency, the effects of quantum and thermal
noise, and the dead time required to reset the resonators
between measurements. Perfect adiabatic conversion
requires interaction times κ≪ 1=τ≪ 4jGaGbj=ωm≪ωm,
and the dead time to reset the resonators is of the order
of 1=κ. Quantum and thermal noise result in a dark-count
rate that also impacts the figure of merit of the detector;
see Eq. (12). A high-Q and ultracold mechanical oscillator
can significantly suppress these sources of noise.
As an example we consider an optomechanical resonator

with high mechanical frequency ωm ¼ 2π × 4 GHz and
quality factor Q ¼ 87 × 103, which results in γ ¼ 2π ×
46 kHz and n̄c ¼ 72 for a temperature T ¼ 14 K [44].
Because of the large detunings considered here, we find,
however, that the mechanical noise only adds a contribution
of 0.06 to n̄o. The level of thermal microwave noise that

PRL 114, 113601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

113601-4



feeds into n̄s can be managed by cooling the microwave
cavity to cryogenic temperatures. For a microwave cavity
frequency ωb¼2π×300GHz and temperature Tb ¼ 300K,
we have n̄s ¼ 20, but for Tb ¼ 3 K, n̄s is reduced to 0.008.
Finally, we assume linear optomechanical coupling stren-
gths Ga ¼ −2π × 200 MHz and Gb ¼ 2π × 300 MHz,
respectively, giving an effective interaction strength
2GaGb=ωm ¼ −2π × 30 MHz. We also set the same decay
rate for both cavities, κ ¼ 2π × 850 kHz. These parameters
fulfill the condition for adiabaticity of the conversion and
result in a dead time of the order of 100 ns. These estimates
indicate that the detector should be able to operate reliably
at or below the single-photon level.
Conclusion.—We have proposed and analyzed a time-

gated microwave detection scheme based on the control of
polaritons in a hybrid optomechanical system. In contrast to
resonant schemes that focus on high fidelity quantum state
transfer [19–22], the dual optomechanical cavity detector
is driven by a heterodynelike pumping and operates on the
far-off sideband resonant regime to minimize pump and
mechanical noise, thereby offering the potential to reliably
detect very feeble microwave fields. Importantly, that
nonresonant approach does not preserve the quantum state
of the microwave field. Rather, it detects the signal entering
the microwave resonator in a time determined by its decay
time 1=κb just before transfer to the optical domain.
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