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A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the
condensation of low modes of the Dirac operator near the origin. The rate of condensation must be
equal to the slope ofM2

πF2
π=2 with respect to the quark massm in the chiral limit, whereMπ and Fπ are the

mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the
(Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass, and decay constant by numerical
simulations of lattice QCD with two light degenerate Wilson quarks. We use lattices generated by the
Coordinated Lattice Simulation (CLS) group at three values of the lattice spacing in the range
0.05–0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to
190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and
continuum limits with confidence. The results show that the low quark modes do condense in the
continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-
Mann–Oakes–Renner relation. For the renormalization-group-invariant ratios we obtain ½ΣRGI�1=3=F ¼
2.77ð2Þð4Þ and ΛM̄S=F ¼ 3.6ð2Þ, which correspond to ½ΣM̄Sð2 GeVÞ�1=3 ¼ 263ð3Þð4Þ MeV and F ¼
85.8ð7Þð20Þ MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.
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Introduction.—There is overwhelming evidence that the
chiral symmetry group SUðNfÞL × SUðNfÞR of quantum
chromodynamics (QCD) with a small number Nf of light
flavors breaks spontaneously to SUðNfÞLþR. This progress
became possible over the last decade thanks to the
impressive speed-up of the numerical simulations of lattice
QCD with light dynamical fermions; see Ref. [1] for a
recent review and a comprehensive list of references. The
impact on phenomenological analyses of chiral dynamics is
already striking [2].
The formation of a nonzero chiral condensate in the

theory, Σ ¼ − 1
2
hψ̄ψijm¼0, was conjectured to be the effect

of the condensation of the low modes of the Dirac operator
near the origin [3]. The rate of condensation is indeed a
renormalizable universal quantity in QCD, and is unam-
biguously defined once the bare parameters in the action of
the theory have been renormalized [4]. The Banks-Casher
mechanism links the spectral density ρðλ; mÞ of eigenvalues
iλ of the Dirac operator to the condensate as [3]

lim
λ→0

lim
m→0

lim
V→∞

ρðλ; mÞ ¼ Σ
π
; ð1Þ

an identity which can be read in both directions; a nonzero
spectral density implies that the symmetry is broken by a
nonvanishing Σ and vice versa.
The above conceptual and technical advances in lattice

gauge theory paved the way for a quantitative study of the
Banks-Casher mechanism from first principles. It is the aim

of this Letter to achieve a precise and reliable determination
of the density of eigenvalues of the Euclidean Dirac
operator D near the origin at small quark masses in the
continuum. As in any numerical computation, the limits in
Eq. (1) inevitably require an extrapolation of the results
with a predefined functional form. The distinctive signature
for spontaneous symmetry breaking is the agreement
between the chiral-limit value of the spectral density at
the origin, reached by extrapolating the data with the
functional form dictated by chiral perturbation theory
(ChPT), and the slope of M2

πF2
π=2 with respect to the

quark mass m [5,6]. We thus complement our study with
the computations of m, Mπ , and Fπ.
To reach these goals, we use OðaÞ-improved Wilson

fermions at several lattice spacings, and we extrapolate
the numerical results to the universal continuum limit
following the Symanzik effective theory analysis. For
technical reasons we focus on the mode number of the
Dirac operator [4]

νðΛ; mÞ ¼ V
Z

Λ

−Λ
dλρðλ; mÞ; ð2Þ

which at the same time is the average number of eigenm-
odes of the massive Hermitian operator D†Dþm2 with
eigenvalues α ≤ M2 ¼ Λ2 þm2. It is a renormalization-
group-invariant (RGI) quantity as it stands. Its (normalized)
discrete derivative
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~ρðΛ1;Λ2; mÞ ¼ π

2V
νðΛ2Þ − νðΛ1Þ

Λ2 − Λ1

ð3Þ

carries the same information as ρðλ; mÞ, but the effective
density ~ρ is a more convenient quantity to consider in
numerical computations. For practical purposes we also
extend the theory by introducing a quenched “strange”
quark so to have a graded chiral symmetry group SUð3j1Þ.
This is instrumental to derive the ChPT formula for ρðλ; mÞ
[7], and allows us to fix the lattice spacing from the kaon
decay constant FK . The latter is a well-defined intermediate
reference scale which can be computed precisely on the
lattice [8] and is directly accessible to experiments once the
Cabibbo–Kobayashi–Maskawa (CKM) matrix element
jVusj is known. This scale is used here to convert all
quantities in physical units, with the scheme-dependent
ones (m, ρ, Λ, Σ) renormalized in the M̄S scheme at
μ ¼ 2 GeV. The final results, however, are independent of
this intermediate step: they are expressed as ratios of
quantities of the two-flavor theory only.
It is worth noting that there were several exploratory

studies of the spectral density of the Dirac operator in QCD;
see for instance [4,9,10]. The approach pursued here is
rather general (preliminary results were presented in
Ref. [11]), and it may be useful in order to study theories
at nonzero temperature or strongly interacting models of
electroweak symmetry breaking [12].
Lattice computation.—We have profited from CLS

simulations of two-flavor QCD with the OðaÞ-improved
Wilson action. On all the lattices listed in Table I we have
computed the mode number and the two-point functions of
ψ̄1γ5ψ2 and ψ̄1γ0γ5ψ2. The ensembles have lattice spacings
of a ¼ 0.075, 0.065, and 0.048 fm as measured from FK
[8]. The quark masses range from 6 to 40 MeV and are
small compared to the typical scale of the theory from the
condensate or the string tension of about 250–450MeV. All
lattices are of size 2L × L3, and the pion mass is always

large enough so thatmπL ≥ 4. Finite-size effects are within
the statistical errors for all measured quantities; see
Ref. [13] for more details. The error analysis takes care
of autocorrelations [14], all Markov chains except for one
(N5) being of length between 24 and 74 τexp, with τexp
being the longest autocorrelation time measured on
the chain.
The mode number has been computed for nine values of

Λ in the range 20–120 MeV with a statistical accuracy of a
few percent on all lattices. Four larger values of Λ in the
range 150–500 MeV have also been analyzed for the
ensemble E5; see Ref. [13] for tables with all results. In
Fig. 1 (top-left) we show ν as a function of Λ for the lattice
O7, corresponding to the smallest quark mass at the
smallest lattice spacing. On all other lattices an analogous
qualitative behavior is observed. The mode number is a
nearly linear function in Λ up to approximately 100–
150 MeV. A clear departure from linearity is observed
for Λ > 200 MeV on the lattice E5. At the percent
precision, however, the data show statistically significant
deviations from the linear behavior already below
100 MeV. To guide the eye, a quadratic fit in Λ is shown
in Fig. 1, and the values of the coefficients are given in the
caption. The bulk of ν is given by the linear term, while the
constant and the quadratic term represent Oð10%Þ correc-
tions in the fitted range. The nearly linear behavior of the
mode number, expected if the Banks-Casher mechanism is
at work, is manifest on the top-right plot of Fig. 1, where
the cubic root of the discrete derivative defined in Eq. (3) is
shown as a function of Λ ¼ ðΛ1 þ Λ2Þ=2 for each couple of
consecutive values of Λ. When the regularization breaks
chiral symmetry, discretization effects heavily distort the
spectral density near λ ¼ 0 [15,16]; we thus focus on the
effective spectral density rather than the mode number.
In general, ~ρ1=3 shows quite a flat behavior in Λ at fine

lattice spacings and light quark masses, similar to the one
shown in Fig. 1 (top-right). Because the action and the
mode number are OðaÞ improved, the Symanzik effective-
theory analysis predicts that discretization errors start at
Oða2Þ [4]. In order to remove them, we interpolate the
effective spectral density to three quark mass values
(m ¼ 12.9, 20.9, and 32.0 MeV) at each lattice spacing.
The values of ~ρ1=3 show very mild discretization effects at
light m and Λ, while they differ by up to 15% among the
three lattice spacings toward heavier Λ. Within the stat-
istical errors, all data sets are compatible with a linear
dependence in a2, and we thus independently extrapolate
each triplet of points to the continuum limit accordingly.
The difference between the values of ~ρ1=3 at the finest
lattice spacing and the continuum-extrapolated ones is
within 5% for the lightest m and Λ, and it remains within
few standard deviations at heavier values of m and Λ. This
makes us confident that the extrapolation removes the
cutoff effects within the errors quoted.

TABLE I. Overview of the ensembles used in this study. We
give label, spatial extent of the lattice, quark mass m, pion mass
Mπ , and its decay constant Fπ , and the (updated) value of the
lattice spacing determined from FK as in Ref. [8].

id L=a m [MeV] Fπ [MeV] Mπ [MeV] MπL a [fm]

A3 32 37.4(9) 120.8(7) 496(6) 6.0 0.0749(8)
A4 32 22.8(6) 110.7(6) 386(5) 4.7
A5 32 16.8(4) 106.0(6) 333(5) 4.0
B6 48 12.2(3) 102.3(5) 283(4) 5.2
E5 32 32.0(8) 115.2(6) 440(5) 4.7 0.0652(6)
F6 48 16.5(4) 105.3(6) 314(3) 5.0
F7 48 12.0(3) 100.9(4) 268(3) 4.3
G8 64 6.1(2) 95.8(4) 193(2) 4.1
N5 48 34.8(8) 115.1(7) 443(4) 5.2 0.0483(4)
N6 48 20.9(5) 105.8(5) 342(3) 4.0
O7 64 12.9(3) 101.2(4) 269(3) 4.2
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The results for ~ρ1=3 at m ¼ 12.9 MeV in the continuum
limit are shown as a function of Λ in the bottom-left plot of
Fig. 1. A similar Λ dependence is observed at the two other
reference masses. It is noteworthy that no assumption on
the presence of spontaneous symmetry breaking was
needed so far. These results point to the fact that the
spectral density of the Dirac operator in two-flavor QCD is
nonzero and (almost) constant in Λ near the origin at small
quark masses. This is consistent with the expectations from
the Banks-Casher mechanism. In the presence of sponta-
neous symmetry breaking, next-to-leading (NLO) ChPT
indeed predicts [4,7,17,18]

~ρnlo ¼ Σ
�
1þ mΣ

ð4πÞ2F4

�
3l̄6 þ 1 − lnð2Þ

− 3 ln
�

Σm
F2μ̄2

�
þ ~gν

�
Λ1

m
;
Λ2

m

���
; ð4Þ

i.e., an almost flat function in (small) Λ at (small) finite
quark masses. The parameter l̄6 is a low-energy constant of
the SUð3j1Þ chiral effective theory renormalized at the
scale μ̄, while ~gν is a parameter-free function; see Ref. [13].
Once the pion mass and decay constant are measured, the
(mild) parameter-free Λ dependence of ~ρnlo in Eq. (4) is
compatible with our data.
The extrapolation to the chiral limit requires an

assumption on how the effective spectral density ~ρ behaves

when m → 0. In this respect it is interesting to notice that
toward the chiral limit, the function in Eq. (4) is the
simplest possible one; i.e., it goes linearly in m since there
are no chiral logarithms at fixed Λ [4]. A fit of the data to
Eq. (4) shows that they are compatible with that NLO
formula. Equation (4) predicts that in the chiral limit
~ρnlo ¼ Σ also at nonzero Λ, since all NLO corrections
vanish [18]. By extrapolating the effective spectral density
with Eq. (4) but allowing for the constant term to depend on
Λ, we obtain the results shown in the bottom-right plot of
Fig. 1 with a χ2=d:o:f: ¼ 16.4=14. Within errors, the Λ
dependence is clearly compatible with a constant up to
≈100 MeV. Moreover, the differences between the values
of ~ρ1=3 in the chiral limit and those atm ¼ 12.9 MeV are of
the order of the statistical error; i.e., the extrapolation is
very mild. A fit to a constant of the data gives
Σ1=3 ¼ 261ð6Þð8Þ MeV, where the first error is statistical
and the second one is systematic. The latter is a
conservative estimate obtained by performing various
combined fits of all data suggested by NLO ChPT and
the Symanzik effective theory analysis [13].
To compare the value of the spectral density at the origin

with the slope ofM2
πF2

π=2with respect to the quark massm,
we complement the computation of the mode number with
those for the pion masses and the decay constants, Mπ and
Fπ , as well as the quark mass m. They are extracted from
the two-point functions of the nonsinglet pseudoscalar
density and axial current as in Refs. [8,19]; see
Ref. [13] for more details. Note that the quark mass,
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FIG. 1 (color online). Top-left: The mode number as a function of Λ for O7; a quadratic fit of the data (Λ in MeV) gives
ν ¼ −9.0ð13Þ þ 2.07ð7ÞΛþ 0.0022ð4ÞΛ2. Top-right: ~ρ1=3 for the same ensemble as a function of Λ ¼ ðΛ1 þ Λ2Þ=2. Bottom-left: ~ρ1=3

in the continuum limit at the smallest reference quark mass. Bottom-right: ~ρ1=3 in the continuum and chiral limit. Note the flat
dependence on Λ which agrees with the expectation from NLO ChPT; a plateau fit in the interval 20–80 MeV is also shown.
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denoted by m here, is indicated by mR in Ref. [13].
The results are reported in Table I, and those for the
pseudoscalar decay constant in lattice units are shown in
Fig. 2 versus y ¼ M2

π=ð4πFπÞ2. We fit Fπ to the function

aFπ ¼ aFðaÞf1 − y lnðyÞ þ byg; ð5Þ

where b is common to all lattice spacings, restricted to the
points with Mπ < 400 MeV (see Fig. 2). Apart from the
NLO ChPT just given, we also perform a number of
alternative extrapolations in y. As a final result we quote
aFðaÞ ¼ 0.0330ð4Þð8Þ, 0.0287(3)(7), and 0.0211(2)(5) at
a ¼ 0.075, 0.065, and 0.048 fm, respectively, where the
second (systematic) error takes into account the spread of
the results from the various fits. By performing a
continuum-limit extrapolation we obtain our final result
F ¼ 85.8ð7Þð20Þ MeV. Once the value of F is determined,
we compute the ratio M2

π=2m for all data points. We fit the
data with Mπ < 400 MeV to

�
M2

π

2mF

�
1=3

¼ ½s0 þ s1ðaFÞ2�
�
1þ y

6
lnðyÞ þ dy

�
; ð6Þ

where s0, s1, and d are free parameters common to all
lattice spacings. Also, in this case we checked several
variants although the data look very flat up to the heaviest
mass. From the fit we get s0 ¼ 3.06ð3Þð4Þ which, together
with the value of F, leads to ½ΣM̄S

GMORð2 GeVÞ�1=3 ¼
263ð3Þð4Þ MeV, where errors are determined as for F.
Discussion and conclusions.—From the previous analy-

sis, our best results for the leading-order low-energy
constants of QCD with two flavors are

½ΣM̄Sð2 GeVÞ�1=3 ¼ 263ð3Þð4Þ MeV;

F ¼ 85.8ð7Þð20Þ MeV: ð7Þ

By updating the value of the Λ parameter in Refs. [8,20] to
ΛM̄S ¼ 311ð19Þ MeV and by taking into account the
correlation with F, we obtain the dimensionless ratios

½ΣRGI�1=3
F

¼ 2.77ð2Þð4Þ; ΛM̄S

F
¼ 3.6ð2Þ: ð8Þ

where the RGI condensate is defined with the convention of
Refs. [21,22].
Our results show that the spectral density of the Dirac

operator in the continuum is nonzero at the origin and that
its value agrees with the slope of M2

πF2
π=2 with respect to

the quark mass when both are extrapolated to the chiral
limit. If expanded in m, M2

π is dominated by the leading
Gell-Mann–Oakes–Renner term proportional to the chiral
condensate; see Fig. 3. The ratioM2

π=2m is nearly constant
within errors up to quark masses that are about 1 order of
magnitude larger than in nature.
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