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Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a
rotating string inD dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and
including first subleading order in the large J expansion. This constitutes a first-principles calculation of the
value for the order-J0 contribution to the mass squared of a meson on the leading Regge trajectory in planar
QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in
D ≥ 5, the order-J0 term in the mass squared is exactly calculated by the semiclassical approximation. This
term in the expansion is universal and independent of the details of the theory, assuming only D-
dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world
volume, beyond the Nambu-Goldstone bosons.
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The dynamics of relativistic strings was first studied as a
model to explain the observed spectra of hadronic reso-
nances, which are organized in families according to the
mass relation

M2 ≃ J
α0
þM2

0 ¼
J − α0
α0

; ð1Þ

where J is the angular momentum, α0 defines the Regge
slope, and the Regge intercept α0 ¼ −α0M2

0 depends on
the family. In the string model, the Regge slope can be
expressed in terms of the string tension Tstring, with
α0 ¼ 1=ð2πTstringÞ. Empirically, the string tension takes
the value Tstring ≃ 0.17 GeV2, as determined, for instance,
from the spectra of quarkonia (see, e.g., [1–4]).
While the string model successfully describes the linear

dependence of M2 on J in terms of an underlying
relativistic (classical) dynamics, it has long been unclear
how to promote the string theory of quantum chromody-
namics from a coarse phenomenology to a precision
science. In particular, one would like to be able to view
Eq. (1) as capturing the leading terms in an asymptotic
expansion that holds at large angular momentum J.
In this Letter, we quantize the effective theory of a

rotating relativistic string in D dimensions in conformal
gauge, and we calculate the energy of a string with large
angular momentum J, in one or two planes, in fixed ratio,
up to and including the first subleading order in the 1=J
expansion. That is, we calculate the order-jJj0 term in the
mass squared of a rotating string on the lowest-mass Regge
trajectory at large J.
We perform our calculation in the spirit and in the

formalism of Ref. [5], wherein Polchinski and Strominger
proposed a unitary quantization of the relativistic string that
preserves Lorentz invariance at the quantum level without

introducing degrees of freedom beyond the motions of the
string itself in D-dimensional space-time. This approach,
known as “effective string theory,” can be implemented in
any dimension D and can describe the space-time kin-
ematics of strings without any additional degrees of free-
dom. This is similar to the Polyakov approach [6], which
couples a conformal field theory describing D free embed-
ding coordinates Xμ to an intrinsic world sheet metric gab
and treats world sheet reparameterizations and Weyl trans-
formations of gab as gauge symmetries. The Polchinski-
Strominger (PS) approach differs by introducing Xμ var-
iables that are not free, such that the central charge is
compensated by interaction terms. In particular, in addition
to the free Lagrangian

Lfree ¼
1

πα0
∂þX · ∂−X; ð2Þ

the theory has an interaction term

LPS ¼
β

2π

ð∂2þX · ∂−XÞð∂þX · ∂2
−XÞ

ð∂þX · ∂−XÞ2
; ð3Þ

which controls the conformal anomaly by contributing
Δc ¼ 12β to the central charge of the conformal dynamics
of the Xμ coordinates. (In the above, we have used world
sheet coordinates σ� ≡ σ0 � σ1.) Though the Polyakov
formalism is not the starting point, the resulting action and
constraints are exactly the same as if we had coupled the
theory L ¼ Lfree þ LPS to an intrinsic metric and then
gauge fixed to a flat metric gab ¼ − 1

2
ðδaþδb− þ δa−δbþÞ,

with β chosen so that the theory of the Xμ is an interacting
conformal field theory with c ¼ 26. This fixes the value
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β ¼ 26 −D
12

: ð4Þ

The action may be supplemented with terms of order jXj−2
or smaller, as consistent with (or required by) the condition
that conformal invariance be maintained order by order in
jXj. These terms contribute to amplitudes of the order of
J−2 and smaller, relative to leading-order quantities, and
therefore do not contribute to the asymptotic Regge
intercept.
The interacting stress tensor of the X fields satisfies the

operator product expansion of a conformal stress tensor
with c ¼ 26 [5]; its modes are Virasoro generators, defining
physical states jΨi under the conditions

ðL0 − 1ÞjΨi ¼ ð ~L0 − 1ÞjΨi ¼ LnjΨi ¼ ~LnjΨi ¼ 0;

with n ≥ 1. The resulting theory of the Xμ coordinates has
the status of an effective theory only, in that it should be
thought of as an expansion that is valid in the limit where
the physical length of the string is much larger than

ffiffiffiffi
α0

p
.

We consider the special case of the leading Regge
trajectory, composed of lowest-mass states for given values
of the angular momentum. This simplifies the calculation in
three ways.
First, the physical state conditions with n ≥ 1 are all

automatically satisfied for the lowest-energy state carrying
a fixed set of Noether charges (here, Poincaré generators Pμ

and Jμν, and L0 − ~L0), so long as the Noether generators are
exactly conserved and the lowest state with those charges is
unique. Then, the remaining physical state condition,
specified by L0, dictates the first-order shift in the mass
squared of the string state. The calculation of ΔM2 at the
order of J0 thus reduces to a first-order shift in the
eigenvalue of the world sheet Hamiltonian. This shift in
the world sheet energy Ews reduces to an expectation value
of the interaction Hamiltonian Ĥfirst-order in the free-field
state with Noether charges Pμ and Jμν.
Second, the expectation value of an operator in an

eigenstate of large angular momentum J is approximated
at leading order by the classical value of that operator in a
rotating solution with a helical symmetry. The corrections
to the leading-order value are calculable and of the order of
1=J or smaller, relative to the classical value. These
corrections can be computed in a straightforward manner
(for instance, by representing definite-J states as contour
integrals of coherent states and evaluating expectation
values in a saddle point expansion at large J). The
interaction Hamiltonian is of the order of βjXj0 and
therefore exhibits a classical value of order βjJj0 in
eigenstates of large J. The corrections to the classical
value are of the order of jJj−1 at most and therefore do not
contribute to ΔM2 at the order of J0. Thus, the order-J0

shift of the mass squared is proportional to the order-J0

shift in the eigenvalue of the world sheet Hamiltonian,

which is simply the classical value of the interaction
Hamiltonian at that order.
The third simplification is that we need not use the

explicit form of the interaction Hamiltonian, even for
purposes of classical evaluation. By straightforward manip-
ulations in classical mechanics, it is possible to show that
the first-order shift in the energy of the lowest classical
solution with fixed Noether charges is equal both to the
value of the interaction Hamiltonian and, equivalently, to
the negative of the value of the interaction Lagrangian,
evaluated in the unperturbed (zeroth-order) helically sym-
metric solution with the appropriate Noether charges.
We start with closed string configurations in D ≥ 5 by

describing the lowest-energy state with the quantum
numbers of interest in the free theory. Generally, the
lowest-energy eigenstates of angular momentum in the
Z; Z̄ plane are those generated by acting J times with left-
or right-moving creation operators, with one unit of L0 or
~L0 each. For the closed string, there is also the additional
restriction of level matching, meaning that the number of
left- and right-moving creation operators must be the same.
The states of interest are such that, in an appropriately

chosen Cartan decomposition, the angular momenta are
aligned with the “3” direction of the self-dual and anti-self-
dual SUð2Þ� subgroups of the SOð4Þ ⊂ SOðD − 1Þ little
group. For D ≥ 5, we can consider general angular
momenta in both planes, where the string states are chosen
to be primaries of both SUð2Þ� subgroups, and the total
angular momentum quantum numbers are J� ≡ 1

2
ðJ1 � J2Þ

in SUð2Þ�. In other words, by minimizing the energy over
the highest-weight vectors of SUð2Þþ × SUð2Þ−, with total
angular momenta J� and zero momentum in the σ1

direction, the unique lowest-energy state in the free theory
can be expressed as

jJþ; J−;Pifree ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N ðS1Þ
Jþ;J−

q ðαZ1

−1 ~α
Z2

−1 − αZ2

−1 ~α
Z1

−1ÞJþ−J−

× ðαZ1

−1 ~α
Z1

−1ÞJ− j0;Pifree: ð5Þ

The energy under the free-field Hamiltonian is

EðfreeÞ
ws ¼

�
1

2
α0P2 þ 2Jþ

�
−

D
12

; ð6Þ

where the last term is the usual free-field Casimir energy.

The normalization constants (N ðS1Þ
Jþ;J−) can be chosen to

render the nonzero modes of the Fock states unit-normal-
ized. Furthermore, we can choose that Jþ > J−, for
instance, without loss of generality.
Expectation values of operators in jðJ; PÞi are given to

leading order in J by the classical values of those operators
in a particular helically symmetric solution, suitably aver-
aged over rotations in the Z planes if the operator in
question is not already symmetric.
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A general helically symmetric classical solution is given
by

X0 ¼ α0P0σ0;

Zi ¼ −i

ffiffiffiffi
α0

2

r
ðαZi

−1e
iσþ þ ~αZi

−1e
iσ−Þ;

Z̄i ¼ i

ffiffiffiffi
α0

2

r
ðαZ̄i

1 e
−iσþ þ ~αZ̄i

1 e
−iσ−Þ; ð7Þ

with i ∈ f1; 2g and with the mode amplitudes obeying

ðαZi
−nÞ� ¼ αZ̄i

n . The free angular momentum generators are

Ji ¼
i

4πα0

Z
dσ1ðZi

_̄Zi − Z̄i
_ZiÞ

¼ 1

2
jαZi

−1j2 þ
1

2
j ~αZi

−1j2:

Fixing Pμ, L0 − ~L0 ¼ 0, and the values of the angular
momenta Jμν, and then choosing values of the Fourier
coefficients that minimize L0 þ ~L0, we find

αZ1

−1 ¼ αZ̄1

1 ¼ ~αZ1

−1 ¼ ~αZ̄1

1 ¼
ffiffiffiffiffi
J1

p
;

αZ2

−1 ¼ αZ̄2

1 ¼ − ~αZ2

−1 ¼ − ~αZ̄2

1 ¼
ffiffiffiffiffi
J2

p
: ð8Þ

With this solution, the contribution of the PS anomaly term,
evaluated in the rotating ground state, takes the form

L PS
rotating solution

¼ −
βJ2−
2π2

sin2ð2σ1Þ
½Jþ − J− cosð2σ1Þ�2

: ð9Þ

This Lagrangian density becomes singular at the end points
σ1 ¼ 0 and π, in the limit Jþ ¼ J−. This limit is imposed
automatically in D ¼ 4, as the little group SOðD − 1Þ has
rank one, and J2 must vanish. The singularity corresponds
to the development of a fold in the string, and we defer a
careful treatment of these cases for future work.
However, the integral is finite for generic angular

momenta in D ≥ 5, and we do not need to regulate or
renormalize. The resulting value of the mass squared, to the
order of J0, is

M2
closed ¼

1

α0

�
2ðJ1 þ J2Þ −

D − 2

6

þ 26 −D
12

��
J1
J2

�
1=4

−
�
J2
J1

�
1=4

�
2
�
þOðJ−1Þ:

ð10Þ

The contribution from the PS term is nonzero unless
J1 ¼ J2, or D ¼ 26. There is also the Casimir term, which
contributes one factor of −1=ð12α0Þ to M2

closed for each
right- and left-moving transverse free boson. We omit the
details of this calculation, except to note that one-loop
vacuum diagrams are independent of the background

solution at the order of jXj0, so the Casimir contribution
to the energy is identical to that of the static string.
A qualitatively new effect appears for open rotating strings

with Neumann boundary conditions: The anomaly term (3)
in the effective action becomes singular at the boundary, and
the singularity is nonintegrable. This divergence is a short-
distance singularity, however, which can be removed by
regularization and renormalization. In particular, we can
remove the divergence by adjusting the coefficient of a
boundary operator—the unique marginal boundary operator
with the correct X scaling to cancel the divergence.
In terms of J�, the lowest-energy, highest-weight states

in the free theory are specified by

jJþ; J−;Pifree ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N ðopenÞ
Jþ;J−

q ðαZ1

−1α
Z2

−2 − αZ1

−2α
Z2

−1ÞJþ−J−

× ðαZ1

−1Þ2J− j0;Pifree; ð11Þ

where N ðopenÞ
Jþ;J− is again a normalization constant. The

energy under the free-field Hamiltonian now appears as

EðfreeÞ
ws ¼ α0P2 þ 3Jþ − J− −

D
24

: ð12Þ

Analogous to the closed string, expectation values of
rotationally symmetric operators in this state are given to
leading order in J by the classical values of those operators
in a particular helically symmetric classical solution, which
minimizes the energy for its Noether charges and takes the
form

X0 ¼ 2α0P0σ0;

Z̄1 ¼ i

ffiffiffiffi
α0

2

r
αZ̄1

1 ðe−iσþ þ e−iσ
−Þ;

Z̄2 ¼ i

ffiffiffiffi
α0

2

r
αZ̄2

2

2
ðe−2iσþ þ e−2iσ

−Þ;

Z1 ¼ −i
ffiffiffiffi
α0

2

r
αZ1

−1ðeiσ
þ þ eiσ

−Þ;

Z2 ¼ −i

ffiffiffiffi
α0

2

r
αZ2

−2
2

ðe2iσþ þ e2iσ
−Þ; ð13Þ

with

αZ̄1

1 ¼
ffiffiffiffiffiffiffi
2J1

p
; αZ1

−1 ¼
ffiffiffiffiffiffiffi
2J1

p
;

αZ̄2

2 ¼ 2
ffiffiffiffiffi
J2

p
; αZ2

−2 ¼ 2
ffiffiffiffiffi
J2

p
: ð14Þ

As noted, the PS term for open strings exhibits a short-
distance divergence near the boundaries, which can be
canceled with an appropriate boundary counterterm, and an
analysis of scale-invariant boundary operators consistent
with Lorentz symmetry reveals that only one such inde-
pendent operator is available to regulate the divergence. In
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particular, the short-distance divergence can be shown to
take the form of a quark-mass boundary operator, with a
coefficient that diverges as some short-distance regulator
scale ϵ is taken to zero. The divergence can thus be
canceled with a corresponding counterterm.
Wenowcompute thevalueof the regulatedclassical action

and renormalize itwith a boundary counterterm to extract the
finite piece that contributes to the Regge intercept. To
regulate the divergence, we modify the form of the PS
Lagrangian to cut off the singular behavior of the integrand:

LPS ¼ β

2π

ð∂2þX · ∂−XÞð∂þX · ∂2
−XÞ

ð∂þX · ∂−XÞ2

→ LPS;reg ≡ β

2π

ð∂2þX · ∂−XÞð∂þX · ∂2
−XÞ

ð∂þX · ∂−XÞ2 þ α0ϵ4ð∂2þX · ∂2
−XÞ

;

where the coefficientα0ϵ4 of the regulating term is chosen for
later convenience. This form of the modification preserves
D-dimensional Poincaré invariance and all other symmetries
of the theory, including two-dimensional scale invariance.
(These requirements drastically constrain the form of the
available counterterms.)
Next, we must calculate the σ1 integral of the classical

value of LPS, from 0 to π, up to and including the order of
ϵ0. Before extracting the finite term, we first consider the
form of the divergence as we send ϵ → 0. To this end, we
introduce a new integration variable u by rescaling σ1:

σ1 ¼ ϵhOðquarkÞiu; ð15Þ

where OðquarkÞ is the boundary operator

OðquarkÞ ≡ ð∂2
σ1
X · ∂2

σ1
XÞ1=4 ð16Þ

and hOðquarkÞi is its value in the classical rotating solution,
proportional to ðJ1 þ 8J2Þ1=4. Expanding the integrand
dσ1LPS;reg in terms of u, we see that the ϵ−1 divergence
is proportional, with a universal coefficient, to hOðquarkÞi.
We conclude that the divergence of the PS action near a
Neumann boundary can be renormalized with a boundary
counterterm proportional to ϵ−1OðquarkÞ.
The operator OðquarkÞ is the only independent Lorentz-

invariant boundary operator in the theory with a marginal
scaling dimension and non-negative X scaling. This fact
depends crucially on the hypothesis of a certain “dressing
rule" for boundary operators at Neumann boundaries: that
the dressing of boundary operators comes only in powers of
OðquarkÞ itself. That is, only the combination (∂2

σ1
X · ∂2

σ1
X),

and no other invariant, can occur in negative or fractional
powers in boundary operators for open strings with
Neumann boundary conditions. This Neumann boundary
dressing rule is not intuitively obvious but emerges
automatically in the D-dimensional open effective string
theory derived from a critical string theory when holo-
graphic or Liouville directions are integrated out [7]. With

this dressing rule assumed, we find that all other linearly
independent marginal boundary operators respecting
D-dimensional Poincaré symmetry can be eliminated by
field redefinitions, Virasoro constraints, and discarding
total derivatives tangent to the boundary and operators
with negative X scaling (and therefore negative J scaling).
We now demonstrate the renormalizability of the diver-

gence directly and extract the finite term by performing the
integral. Oneway to carry this through is to perform a change
of variables w≡ expð2iσ1Þ, taking the contour on the unit
circle jwj ¼ 1. The integrand is a rational function of w, and
we can evaluate the integral by taking residues. The divergent
terms come from four poles which approachw ¼ 1, with two
from each side of the unit circle, which give rise to the ϵ−1

behavior of the integral in the ϵ → 0 limit. In termsofσ1, these
areboundarycontributions, corresponding to the endpoints of
the string. Together, they contribute

ΔM2
open ¼

1

ϵ

26 −D
24α0

ðJ1 þ 8J2Þ1=4 þ ðfiniteÞ: ð17Þ

In addition, there are contributions frompoles in the interior of
theunit circle in thewplane.Theseare finite in theϵ → 0 limit.
After renormalizing theϵ−1 divergencebyaddingourcounter-
term to the boundary Lagrangian proportional toOðquarkÞ, we
obtain

M2
open ¼

1

α0

�
J1 þ 2J2 −

D − 2

24

þ 26 −D
24

�
−4þ 3J1 þ 4J2

J1=21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1 þ 8J2

p
��

þOðJ−1Þ:

ð18Þ

For angular momenta lying in a single plane (i.e., when
J2 ¼ 0), the mass squared equals M2

open ¼ ðJ1 − 1Þ=α0,
independent of D. Of course, when D ¼ 26, we obtain
M2

open ¼ ðJ1 þ 2J2 − 1Þ=α0. This is the case in which the
bosonic string theory is well defined microscopically, and the
singular PS anomaly term is absent.
At large J, the leading contribution of the quark-mass

term to the spectrum and boundary condition are of the
relative order of J−3=4. The quark-mass operator also has an
indirect effect on the spectrum through its modification of
the Casimir energy, but this is of the relative order of J−7=4

at most: The frequency of each mode shifts at the absolute
order of J−3=4, and so the correction to the renormalized
sum over frequencies is of the same order. These effects
leave the asymptotic intercept unchanged.
It is indeed worth emphasizing that in the mass-squared

formula (18) we have fine-tuned the finite part of the
coefficient of the quark-mass operator OðquarkÞ so that there
is no term of the order of J1=4. A generic value of the quark
mass would contribute to the open-string mass squared at
this order; an OðquarkÞ term with a flavor-dependent
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coefficient at each boundary must therefore be included in
any fit to real-world data. (See, for example, Ref. [8].)
The results above [in particular, Eq. (18)] constitute the first

step toward using the covariant formalism to connect the
higher-resolution predictions of effective string theory with
experiments. To be sure, the theory still lacks several features
of realistic QCD, though the corrections we have computed
above stand as universal contributions to the Regge intercept
for massless bosonic quarks. Unsurprisingly, this simplified
model—noninteracting strings with bosonic, flavorless end
points—has an intercept differing from that of the best-fit
trajectory to data in the actual hadron spectrum (see, e.g., [3],
or [4] for the latest underlying data). Where we find an
asymptotic Regge intercept for the open string of α0 ¼
−M2

0α
0 ¼ 1 on the leading trajectory (for J2 ¼ 0 and

D ¼ 4), the data indicate an asymptotic intercept in real
QCD that is roughly half this value for the trajectory of the ρ
meson.While the sign and order ofmagnitude are correct, it is
an important problem to understandwhat contributions, other
than the quark-mass effects discussed above,might be needed
to eliminate the remaining difference.
Estimates of corrections from OðjXjÞ−2 terms in the

action and electromagnetic corrections appear to be too
small. Regarding the latter, for instance, we note that
electromagnetic interactions between quarks must scale
as ΔP0 ∝ αem=L ¼ αem=

ffiffiffiffiffiffiffi
Jα0

p
, where L is the physical

length of the string. These effects contribute to the intercept
but are suppressed by the fine-structure constant αem.
Nonplanar effects include self-interactions of each

boundary and also nonlocal effects such as pion exchange
between boundaries. The former may be absorbed into a
renormalized world sheet action, while the latter are
exponentially suppressed. Neither can affect the intercept
in the strictly asymptotic regime but may be at the threshold
of contributing nontrivially for attainable values of J. For
instance, we can estimate the leading nonlocal nonplanar
effect by the Yukawa potential, V ¼ g2e−mπL=L, giving a
contribution to the meson dispersion relation of ΔM2∼
2g2e−0.4

ffiffi
J

p
, where g2 scales as 1=Ncolors. Local nonplanar

effects at the boundary will also be enhanced by negative
powers of mπ.
Other nonplanar effects can exhibit leading-order J

scaling with a positive exponent. The amplitude for decay
by splitting, for instance, is extensive along the length of
the string and scales as

ffiffiffi
J

p
=Ncolors. These effects are

unimportant in the strictly planar regime Ncolors ≫ffiffiffi
J

p
≫ 1. The strict Ncolors ¼ ∞ limit is a good approxi-

mation to many observables in real QCD, possibly due to
suppression of nonplanar effects by small numerical
coefficients, and we anticipate this may be so for the form
of the asymptotic Regge spectrum.
Finally, we note that the inclusion of fermionic quarks

carrying quantum numbers of chiral flavor symmetry may
generate contributions at the order of interest and bring the
predictions of the effective string calculation closer to the

observed value of the intercept. Including chiral symmetry
may also make it possible to use current algebra to estimate
the size of nonplanar interactions, such as the coefficient g
of the Yukawa potential above.
Since the late 1960s, the physical significance of the

Regge behavior of the hadronic spectrum has been recog-
nized as key to the physics of the strong interactions. This
phenomenon lies at the heart of the connection between
confining gauge theory and string theory. In the intervening
decades, however, very few concrete contributions have
been made to advance the goal of matching the detailed
predictions of confining, non-Abelian gauge theory to
observation, via string theory or otherwise.
The results presented here solve the outstanding problem

of computing the first subleading corrections to the Regge
spectrum for massless bosonic quarks in the planar limit at
large J. In particular, the absence of operators scaling as
jXj0 in the boundary operator spectrum means that the
order-J0 term in the dispersion relation is universal, even in
the presence of quark masses. Thus, while the analysis
leaves out some elements of realistic QCD, the terms
computed above stand as a necessary component of any
attempt to further connect the predictions of confining
QCD in this regime with empirical observation.
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