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The properties of the absorbing states of nonequilibrium models belonging to the conserved directed
percolation universality class are studied. We find that, at the critical point, the absorbing states are
hyperuniform, exhibiting anomalously small density fluctuations. The exponent characterizing the
fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a
new correlation length relating to this ordering is proposed. These results may have relevance to photonic
band-gap materials.
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Dynamical systems with absorbing states [1–3] are
intrinsically out of equilibrium, as they necessarily violate
detailed balance—by definition, once they arrive at an
absorbing state, they can never get out. There are many
such systems, and they have an extensive literature [3].
Recently [4,5], an experimental system of non-Brownian
colloids displaying a transition to an absorbing state has been
studied, and a model, called “random organization” [5], has
been proposed as a description of the experimental phenom-
ena. Additionally, a similar transition has been observed in a
dense glassy system of Brownian colloids under shear [6].
Absorbing states satisfy some model-dependent condi-

tion, the specifics of which do not appear to change the
behavior qualitatively. The control-parameter space is
divided into two regions—one where absorbing states are
achieved for any typical initial state, the other where
absorbing states, although possible, are not attained, result-
ing in a nonequilibrium steady state with a nonzero average
number of “active” particles which violate the stipulated
condition. These regions are separated by a critical line, and
the transition between the two phases displays character-
istics of a continuous phase transition, with a diverging
correlation length. This phenomenology is common to all
absorbing state models.
In this Letter, we shall study the “order” that develops in

several absorbing state models as the system approaches the
critical point from within the absorbing phase. Remarkably,
even though the initial states are random, the dynamics are
random, and there is an enormous number of random
absorbing states, those absorbing states actually attained
by the system are special, with greatly diminished density
fluctuations. As we approach criticality, these fluctuations
scale differently from the usual random system—they are, in
fact, hyperuniform [7,8]. Hyperuniform systems have
recently attracted interest due to their relation to photonic
band-gap materials [9,10]. Thus, the setups in [4–6] may
provide an efficient method for creating such materials
in bulk.

For a system in d dimensions, we characterize the
density fluctuations in a region of volume V ¼ ld by

σ2ðlÞ≡ hρ2ðlÞi − hρðlÞi2 ∝ l−λ; ð1Þ

where ρðlÞ is the number of particles in the region divided
by V. The average is taken over many different volumes
of the same system. Random systems, such as a Poisson
process, have the standard “

ffiffiffiffi
N

p
” fluctuations; this corre-

sponds to λ ¼ d. When λ > d, the particles are distributed
more uniformly; such distributions are termed hyperuni-
form [7,11]. We find that, for the models we study,
λ > d for critical absorbing states. In all cases, the
initial configuration is random with no correlations
[σ2ðlÞ ∝ l−d]; hence, any anomalous value of the expo-
nent λ is due to the dynamics. This behavior should be
contrasted with equilibrium models, like the Ising model,
whose fluctuations are enhanced at the critical point, with
λ < d [12].
If the system is not exactly critical, we find a crossover

from hyperuniform behavior at short scales to random
behavior at large scales; this enables the definition of a
static correlation length ξ× which diverges as the critical
line is approached. This behavior is common to all the
models we examined, with exponents that appear to be
universal. We note that this correlation length is different in
character and origin from that typically studied for such
systems, which is defined in the active phase.
The systems we shall study are representatives of the

conserved directed percolation (“Manna”) universality
class [2,3]. In all cases, the particles in a given configu-
ration are distinguished into “active” and “inactive” par-
ticles. At each time step, the active particles, if there are
any, are displaced randomly with a bounded distribution.
Particle displacements are simultaneous, and the dynamics
continue until there are no more active particles (this is the
absorbing phase) or until a steady state sets in (with a finite
active density). Although it is not essential, we employ
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periodic boundary conditions and all the data we present
are averaged of 50–100 realizations.
The various models differ in the criteria defining which

of the particles are active and what sort of random
displacements will be performed. Whatever their details,
the phase transitions are characterized by a set of universal
critical exponents which depend only on the dimension-
ality. The models we consider in this Letter are (1) con-
served lattice gas (CLG) (2D and 3D) [13]: Particles are
placed randomly on a d-dimensional cubic lattice of
volume Ld with density ρ, such that each lattice site is
occupied by, at most, one particle. Particles with adjacent
neighbors are considered active. At each time step, each
active particle moves to a random empty neighboring site.
If several active particles attempt to move to the same
empty site, only one of these moves is allowed; the
other particles remain where they were. (2) Manna model
(1D) [2]: Particles are distributed randomly on a one-
dimensional lattice of length L with density ρ, allowing
multiple occupancy. If there are more than two particles
on a site, they are considered active, and each of them
independently moves randomly to the neighboring site to
the left or the right. (3) Random organization (1D):
N particles of unit diameter are distributed at random
positions in a one dimensional segment of length L.
Overlapping particles are considered active, and at every
time step, each is given a random displacement, distributed
uniformly in ½−ϵ; ϵ�. In this Letter, we have taken ϵ ¼ 0.25.
(4) Random organization (2D) [5]: Particles with diameter
d are distributed uniformly in an L × L square, with a
covering fraction ϕ ¼ ðN=L2Þðπd2=4Þ. The system is then
sheared in the x direction with strain amplitude γ. If, in this
process, two particles collide, they are deemed active [14]
and are given a random displacement whose magnitude is
drawn uniformly from the range ½0; d=2�, with a uniformly
chosen angle. γ and ϕ are the control parameters of the
model, and the critical value of γ depends on ϕ.
We are particularly interested in the spatial distribution

of particles, and we measure the variance of the density
σ2ðlÞ in a region of volume ∼ld to see how it scales with l,
as in Eq. (1). The asymptotic scaling is related to large scale
correlations and is not sensitive to short range fluctuations.
Typically, when λ ≠ d or dþ 1, long range correlations are
present in the system. To see this, consider the variance of
the number of particles in a region which, for simplicity, we
take to be a hypersphere

hN2i − hNi2 ¼ hNi þ
Z

ddr1

Z
ddr2hðr1; r2Þ; ð2Þ

where hðr1;r2Þ¼hρðr1Þρðr2Þi−hρðr1Þihρðr2Þi is the two-
point correlation function, and the integration is over a
hypersphere. If h is translationally invariant, hðr1; r2Þ ¼
hðr1 − r2Þ, and we get

hN2i − hNi2
hNi ¼ 1þ 1

ρ

Z
ddrhðrÞα

�
r
l

�
; ð3Þ

where αðr=lÞ, a dimension-dependent function which
takes account of the domain of integration, lies between
0 and 1 for 0 < ðr=lÞ < 2, and vanishes, otherwise [7]. For
a hyperuniform system, the left hand side of Eq. (3) must
vanish as l → ∞, so we must have

R
ddrhðrÞ ¼ −ρ [15].

As discussed in Ref. [7], long-range negative correla-
tions typically characterize hyperuniform systems. This
is most easily shown in 1D, where the function αðr=lÞ ¼
1 − ðr=2lÞ [16]. In this case, assuming the scaling form of
Eqs. (1) and (3) becomes

l2−λ ∼ lþ 1

ρ

Z
2l

0

drhðrÞ
�
l −

r
2

�
: ð4Þ

Differentiating twice with respect to l yields hðrÞ∼
−r−λ [17].
Power law correlations in continuous phase transitions

often imply a diverging length scale. In absorbing-state
systems, this is manifested in a spreading length which
diverges as the critical point is approached. This length is
the distance that activity ensues following a perturbation,
and is discussed in [1–3]. We shall presently discuss
another length which diverges at the transition.
We now discuss the numerical results for the different

models, starting with the 2D CLG. In Fig. 1, we plot σ2ðlÞ
vs l for several densities below the critical density
ρc ≃ 0.2391. For ρ < ρc, we find, at short distances, that
σ2ðlÞ scales as l−λ with λ ¼ 2.45� 0.03, going over, at
larger distances, to a l−2 decay. This enables us to define a
crossover length ξ× on the absorbing side of the transition.
As ρ approaches ρc, ξ× grows, until finally at ρc, it diverges,
and the second scaling region disappears.

FIG. 1 (color online). Density fluctuations in an l × l box for
the 2D CLG for some different densities. Data collapse is shown
in the inset. Here, L ¼ 1000 and ρc ≃ 0.2391.
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To check if ξ× has the same dependence as the active
site-active site correlation length [2] which diverges as
ξAA ∝ jρ − ρcj−ν⊥ ≡ jΔρj−ν⊥ , we rescale l by jΔρj−ν⊥,
where ν⊥ ≃ 0.8 in 2D [1]. A true data collapse is not
quite possible since there are two scaling regimes. We
choose to match the first scaling regime, so we rescale the y
axis by Δρ−ν⊥λ. As seen in the inset to Fig. 1, the data
collapses rather well, suggesting that ξ× scales in the same
way as the active-active correlation length [1], despite the
fact that the former is defined in the absorbing phase, and
the latter in the active phase.
To relate to the experiment of Ref. [4], and to test the

universality of the exponent λ, we simulate the 2D random
organization model introduced in [5]. This model is
intrinsically anisotropic, due to the directionality of the
shear. As in the experiment, we set the covering fraction ϕ
and vary the strain γ. In Fig. 2, σ2ðlÞ is shown for ϕ ¼ 0.2
and various values of the strain. Phenomenology similar to
that of the CLG is seen, with the same value of the exponent
λ, suggesting that, indeed, λ is universal despite the
anisotropy of the system. This is in agreement with
Ref. [18] which asserts that anisotropy should not change
the universality class of the system.
In addition to the two-dimensional systems above, we

have also simulated the 1D Manna model and the 1D
random organization model of [5], as well as the 3D CLG.
We find that, in both one-dimensional models, λ1d ≃
1.425� 0.025, as shown in Figs. 3 and 4, while for the
3D CLG, λ3d ≃ 3.24� 0.07, as discussed below.
The picture that emerges from these results is that

wherever the dynamics act, they smooth out density
fluctuations in such as way as to become hyperuniform
[19]. When the system is in the absorbing phase (say, at low
densities), the dynamics take place over regions of size ξ×,
so the system becomes hyperuniform on length scales of

this order. As criticality is approached, the dynamics occur
over larger and larger scales, and ξ× diverges. For this
reason, ξ× can be regarded as a basic correlation length
describing the ordering of the system.
Experimentally, hyperuniformity may be identified by

measuring the structure factor SðkÞ [20], which, for small
values of k, scales as SðkÞ ¼ Akλ−d þ NδðkÞ

SðkÞ ¼ 1þ 1

ρ

Z
ddrhρðrÞρð0Þie−ikr

¼ 1þ 1

ρ

Z
ddrhðrÞe−ikr þ NδðkÞ: ð5Þ

With hðrÞ ∝ r−λ, the result follows [21]. Disregarding the
delta function, SðkÞ → 0 as k → 0; this is the signature of
hyperuniformity [7].

FIG. 2 (color online). Mean square density fluctuations for the
2D random organization model at various values of strain
γ < γc ≃ 2.935, with ϕ ¼ 0.2 and L ¼ 400.

FIG. 4 (color online). Density fluctuations as a function of l for
1D random organization. Here, L ¼ 10 000 and ρ < ρc ≃ 0.8692.

FIG. 3 (color online). Density fluctuations in the 1D Manna
model as a function of length l. Here, L ¼ 1 00 000 and
ρ < ρc ≃ 1.6718.
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Let us consider the small k behavior of SðkÞ for the
2D CLG (other models are similar). To do this, we first
evaluate SðkÞ numerically at values of ~k ¼ ðn;mÞð2π=LÞ,
with n;m integers [22], and then perform an angular
average for a given jkj ¼ ð2πn=LÞ using all the wave
vectors in the range ð2πn=LÞ ≤ jkj < ½2πðnþ 1Þ=L�. As
seen in Fig. 5, at the critical point, SðkÞ ∼ jkjλ−d for small
k, with λ≃ 2.45. When ρ < ρc, SðkÞ is proportional to
jkjλ−d for intermediate values of k, with SðkÞ → const as
k → 0 [23].
Surprising behavior is observed for ρ > ρc in the active

region. Here, we measure SðkÞ from snapshots of the
system, since it includes active particles and is dynamic.
Slightly above the critical density, SðkÞ appears to drop
faster than jkjλ−d for small values of k, as shown in Fig. 5:
fluctuations are reduced on large scales. We believe that
this behavior must get cut off at large enough length scales
when off criticality, with limk→0SðkÞ > 0 indicating a finite
(perhaps large) correlation length.
Last, we observe a relation between the critical exponent

λ to a known exponent of the Manna universality class.
First, we note that at criticality, the active-active correlation
function [1] (measured in the active phase, of course) goes
as cðrÞ ∼ r2−d−η⊥ , where η⊥ is an exponent whose values
are given in Table I. As noted above, the density-density
correlation function at criticality scales as hðrÞ ∼ r−λ. As

shown in Table I, our data is well fit in all dimensions by
the form

λ ¼ dþ 2 − η⊥; ð6Þ

which is different from the active-active correlation expo-
nent, though both involve the exponent η⊥.
We conclude by comparing this behavior to that of an

equilibrium system. In equilibrium, particle number fluc-
tuations are related to the isothermal compressibility κT ≡
−ð1=VÞð∂V=∂PÞT by hN2i − hNi2 ¼ hNiρkBTκT. If κT is
finite and nonzero, the particle number variance is exten-
sive, yielding λ ¼ d. This result is expected for finite
ranged interactions since there is a finite energy cost to
move a particle to some random location, so that the density
of displaced particles is proportional to the system volume.
Hyperuniformity, therefore, would not be manifested in
equilibrium states of systems with finite-range interactions
at finite temperature.
Why then, do the absorbing state models herein con-

sidered exhibit hyperuniformity? In the models we study,
there is an essential irreversibility—where the density is
below critical, the system does not evolve. However, active
regions are of higher density, and the dynamics tend to push
particles away to neighboring regions of lower density. For
sparsely populated systems, this process proceeds over a
finite distance (the correlation length), but as the density
increases, the redistribution takes place over ever larger
distances.
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