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We show that the stochastic field theory for directed percolation in the presence of an additional
conservation law [the conserved directed-percolation (C-DP) class] can be mapped exactly to the
continuum theory for the depinning of an elastic interface in short-range correlated quenched disorder.
Along one line of the parameters commonly studied, this mapping leads to the simplest overdamped
dynamics. Away from this line, an additional memory term arises in the interface dynamics; we argue
that this does not change the universality class. Since C-DP is believed to describe the Manna class of
self-organized criticality, this shows that Manna stochastic sandpiles and disordered elastic interfaces (i.e.,
the quenched Edwards-Wilkinson model) share the same universal large-scale behavior.
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Self-organized criticality (SOC) and scale-free avalanches
arise in a variety of models: deterministic and stochastic
sandpiles [1–6], propagation of epidemics [7], and elastic
interfaces driven in random media [8–14]. In the last decade
several authors found evidence that most of these models
belong to a small number of common universality classes. A
unifying framework was proposed based on the theory of
absorbing phase transitions (APTs) [15,16]. These are non-
equilibrium phase transitions between an active state and
one—or many—absorbing states. The generic universality
class is the directed-percolation (DP) class [17,18]. The
spreading exponents of the criticalDP clusters are interpreted
as avalanche exponents in the corresponding SOC system
[16]. In the presence of additional conservation laws, other
classes may arise, e.g., the conserved directed-percolation
(C-DP) class,with an infinite number of absorbing states. It is
now often stated, though unproven, that the continuum
fluctuation theory for C-DP is the effective field theory
for Manna sandpiles [19].
Stochastic sandpiles are cellular automata where the

toppling rule contains randomness, renewed at each top-
pling. A notable example is the Manna model [2,4,20],
which proceeds as follows: Randomly throw grains on a
lattice. If the height at one point is ≥ 2, then move two
grains from this site to randomly chosen neighboring sites.
Careful numerical studies [2,21–24] showed that the
Manna and the deterministic Bak-Tang-Wiesenfeld
(BTW) models belong to different universality classes
(see [5,21,25] for reviews). It was proposed in [26,27]
that the coarse-grained evolution equations for the Manna
class identify with the stochastic continuum equations for
the C-DP class,

∂tρðx; tÞ ¼ aρðx; tÞ − bρðx; tÞ2 þDρ∇2ρðx; tÞ
þ σηðx; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ

p
þ γρðx; tÞϕðx; tÞ; ð1Þ

∂tϕðx; tÞ ¼ ðDϕ∇2 −m2Þρðx; tÞ: ð2Þ

Here ρ is the local activity and ϕ the local density of grains.
The parameters b, Dρ, Dϕ are positive; ηðx; tÞ is a
(centered) spatiotemporal white noise, hηðx; tÞηðx0; t0Þi ¼
δdðx − x0Þδðt − t0Þ. Clearly, ρðx; tÞ ¼ 0 with the arbitrary
“background” field ϕðx; tÞ forms an infinite set of (time-
independent) absorbing states. The field ϕðx; tÞ encodes the
likeliness of absorbing configurations to propagate activity
when perturbed. From Eq. (2), ϕ is a conserved field for
m ¼ 0, reflecting conservation of the total number of
grains. In [28,29] it is claimed that all “stochastic models
with an infinite number of absorbing states, in which the
order-parameter evolution is coupled to a nondiffusive
conserved field, define a unique universality class.” This
is the C-DP, as further supported in [30,31]. The C-DP class
is believed to contain conserved lattice-gas models, con-
served threshold-transfer processes, and others [16,29,32].
On the other hand, there were early conjectures that
sandpile models and disordered elastic manifolds belong
to the same universality classes: The first claim relates the
BTW model and elastic interfaces driven in a periodic
disorder [9], reexamined recently [33]. It was followed by a
conjecture [34] on the equivalence of the Oslo model [3] to
an elastic string driven by its endpoint in a nonperiodic
quenched random field, the latter emerging from the
stochastic noise in the Oslo model. Finally, it was con-
jectured that Manna sandpiles are equivalent to interfaces in
random media [22,35].
Quite naturally, it was then proposed that C-DP and the

depinning of an interface belong to the same universality
class [22,27,30,36,37]. Until now this remarkable claim has
been mainly based on the numerical coincidence of critical
exponents in simulations of discrete models, believed to
belong to the respective universality classes [19,22]. This
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coincidence of exponents and the convergence of these
simulations was contested in [38], where it was proposed
that Manna sandpiles are instead equivalent to DP. It is thus
crucial to find a direct connection at the level of the
continuum theories. The field theory of interfaces subject to
disorder is well known, for both depinning [39–41] and
avalanches [12,13,42]. It is described by functional renorm-
alization group (FRG), involving an infinite number (a
function) of relevant couplings near its upper critical
dimension, dc ¼ 4 [43]. One would like to relate it to
the C-DP field theory. Although it was realized that the
renormalization of the C-DP class is more complex than that
of standard DP, which requires only a few couplings, the
attempts to handle it were unsuccessful [32,44]. Intriguingly,
the full renormalized disorder correlator was measured
numerically [45] and was found to be indistinguishable
from that of random interfaces obtained in [46].
The aim of this Letter is to provide an exact mapping in the

continuum, between the C-DP class defined by Eqs. (1) and
(2) and an interface driven in quenched disorder, with a
specific, exponentially decaying, microscopic disorder cor-
relator. Along a line in parameter space it maps C-DP to the
simplest overdamped dynamics of the interface, thereby
proving the long-sought-for equivalence of the two systems.
Away from this line, the dynamics of the interface contains an
additional memory kernel. As we show, C-DP nevertheless
falls into the same universality class as the simplest over-
damped model, i.e., quenched Edward-Wilkinson (QEW).
Let us consider the two coupled equations of motion (1)

and (2). For convenience we added a parameter m2, since
m2 appears in the interface model as an infrared regulator.
Although we are interested in the limitm → 0, it is useful to
define the theory with m > 0, as this ensures that the
activity ρðx; tÞ will stop even without grains leaving the
system, whose size can be taken infinitely large.
To simplify the identification, note that by rescaling space
we can set Dρ → 1. By rescaling ϕ, we can then set
Dϕ → 1. Finally, rescaling both ρ and ϕ, we can set σ → 1.
This simplifies the model to

∂tρðx; tÞ ¼ aρðx; tÞ − bρðx; tÞ2 þ∇2ρðx; tÞ
þ ηðx; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ

p
þ γρðx; tÞϕðx; tÞ; ð3Þ

∂tϕðx; tÞ ¼ ð∇2 −m2Þρðx; tÞ: ð4Þ

The activity variable ρðx; tÞ ≥ 0 for all times [47]. Note that
γ ¼ 0, b > 0 corresponds to directed percolation: In the
absence of noise, i.e., in mean field, DP exhibits a transition
between ρ > 0 for a > 0 and ρ ¼ 0 for a ≤ 0. This
transition exists in any d. The noise ηðx; tÞ becomes
relevant for d ≤ dc ¼ 4, a property shared by DP and
C-DP; the latter has γ > 0, which we now examine.
As we will see below, γ ¼ b is special. We therefore set

b ≔ γ þ κ. We define new variables, a force F ðx; tÞ and a
velocity _uðx; tÞ (denoting ∂t or a dot the time derivative),

F ðx; tÞ ≔ ρðx; tÞ − ϕðx; tÞ − aþm2

γ
; ð5Þ

ρðx; tÞ ≔ _uðx; tÞ: ð6Þ

The total number of topplings at position x since t ¼ 0 is
uðx; tÞ − uðx; t ¼ 0Þ ¼ R

t
0 dt

0ρðx; tÞ. The identification of u
as a height for the associated elastic interface is standard
[45], while the identification ofF as a force is new. Clearly,
the initial value of the field uðx; t ¼ 0Þ does not carry any
information for C-DP, though it does for the interface [48].
For notational simplicity we set uðx; t ¼ 0Þ ¼ 0. All our
results can be extended to the general case by replacing
uðx; tÞ → uðx; tÞ − uðx; t ¼ 0Þ. The equations of motion
for F ðx; tÞ and _uðx; tÞ are then

∂tF ðx; tÞ ¼ −γF ðx; tÞ _uðx; tÞ − κ _uðx; tÞ2

þ ηðx; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_uðx; tÞ

p
; ð7Þ

∂t _uðx; tÞ ¼ ½∇2 −m2� _uðx; tÞ þ ∂tF ðx; tÞ: ð8Þ
The problem is defined with initial data _uðx; t ¼ 0Þ and
F ðx; t ¼ 0Þ. Equation (8) can be integrated into

∂tuðx; tÞ ¼ ½∇2 −m2�uðx; tÞ þ F ðx; tÞ þ fðxÞ; ð9Þ

fðxÞ ≔ _uðx; 0Þ − F ðx; 0Þ ¼ ϕðx; 0Þ þ aþm2

γ
: ð10Þ

Equation (9) describes the motion of an elastic interface
subject to a known time-independent external force fðxÞ
and a space-time-dependent force F ðx; tÞ. Because of the
termm2, the interface also sees a quadratic well. Integration
of Eq. (4) shows that the change in the background field,
ϕðx; tÞ − ϕðx; 0Þ, can be interpreted as the sum of the
elastic force plus the force from the quadratic well, acting
on the interface. Equation (7) determines F ðx; tÞ as a
stochastic functional of the field uðx; tÞ, depending on the
noise. It is formally written asF ðx; tÞ≡ F ½u; η�ðx; tÞ. Once
F ðx; tÞ is known, substituting it into Eq. (9) yields an
elastic manifold in a random medium. As we show now,
F ðx; tÞ can be written explicitly. Equation (7) is linear in F
with two source terms; hence, its solution is

F ðx;tÞ¼e−γuðx;tÞF ðx;t¼0ÞþF disðx;tÞþF retðx;tÞ: ð11Þ

The first term depends on the initial condition, and decays
to zero if the interface moves by more than 1=γ; it can be
ignored in the steady state. The second term can be
interpreted as a quenched random pinning force. It arises
from the noise in Eq. (7), is independent of κ, and is the
only term when κ ¼ 0 (then F ret ¼ 0), i.e., for γ ¼ b. It can
be written as F disðx; tÞ ¼ Fðuðx; tÞ; xÞ, where for each x,
Fðu; xÞ is an Orstein-Uhlenbeck process [49], the solution
of the stochastic equation

∂uFðu; xÞ ¼ −γFðu; xÞ þ ~ηðx; uÞ; ð12Þ
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with initial data Fð0; xÞ ¼ 0, and where ~ηðx; uÞ is a white
noise, uncorrelated in x and u. A pedestrian way to derive
Eq. (12) is to write the white noise ηðx; tÞ ¼ dBxðtÞ=dt in
Eq. (7) in terms of independent one-sided Brownians BxðtÞ
indexed by x, with Bxð0Þ ¼ 0, and integrate the linear
equation as

F disðx;tÞ¼
Z

t

0

dt0
dBxðt0Þ
dt0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_uðx;t0Þ

p
e−γ½uðx;tÞ−uðx;t0Þ�

¼e−γuðx;tÞ
Z

uðx;tÞ

0

eγud ~BxðuÞ¼Fðuðx;tÞ;xÞ: ð13Þ

The force Fðu; xÞ is the solution of the Orstein-Uhlenbeck
process (12) in terms of the white noises ~ηðx; uÞ ¼
d ~BxðuÞ=dx. It can be written as a (time-changed)
Brownian, Fðu; xÞ ¼ ðe−γu= ffiffiffiffiffi

2γ
p Þ ~Bxðe2γu − 1Þ. The second

line in (13) is obtained noting that under a time change
du ¼ _uðx; tÞdt, each Brownian BxðtÞ is changed into
another Brownian ~BxðuÞ with ~Bxð0Þ ¼ 0, asffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_uðx; t0Þp
dBxðt0Þ ¼ d ~Bxðuðx; t0ÞÞ. One then uses the iden-

tity
R
v
0 fðuÞdBxðuÞ ¼ ~Bxð

R
v
0 fðuÞ2duÞ for test functions

fðuÞ, from the scale invariance of Brownian motion.
Hence, neglecting the first (decaying) term in Eq. (11),

we showed that for γ ¼ b C-DP maps onto

∂tuðx; tÞ ¼ ½∇2 −m2�uðx; tÞ þ F(uðx; tÞ; x)þ fðxÞ: ð14Þ

This is an interface driven in a quenched random force field
Fðu; xÞ, which is Gaussian, specified by its correlator,
calculated from the formulas above using BxðuÞBx0 ðu0Þ ¼
δðx − x0Þminðu; u0Þ. The Orstein-Uhlenbeck process
becomes stationary when the interface has been driven
on distances larger than 1=γ,

Fðu; xÞFðu0; x0Þ ¼ δdðx − x0Þ e
−γju−u0j − e−γðuþu0Þ

2γ

→
γu;γu0≫1

δdðx − x0ÞΔ0ðu − u0Þ; ð15Þ

with Fðu; xÞ ¼ 0. The bare disorder correlator of the
random pinning force thus is

Δ0ðuÞ ¼
e−γjuj

2γ
: ð16Þ

It is short ranged, and as a peculiarity has a linear cusp.
Usually one considers smooth microscopic disorder, i.e.,
an analytic Δ0ðuÞ, which under RG (i.e., coarse graining)
develops a cusp linked to the existence of many metastable
states and avalanches beyond the Larkin scale Lc ∼ 1=mc
[50]. A cusp in themicroscopic disordermeans that there are
avalanches of arbitrarily small sizes. On the other hand, any
short-ranged force-force correlator flows at large scale,
under coarse graining, to the same renormalized disorder
correlator, the universal depinning fixed point [50]. Its upper
critical dimension isdc ¼ 4, implying thatC-DPhasdc ¼ 4.

The fixed-point function has been calculated analytically in
a ε ¼ dc − d expansion [41] andmeasured numerically [46].
It determines the two independent exponents of the depin-
ning transition: the roughness exponent ζ of the field u ∼ Lζ,
ζ > 0 for d < dc, and the dynamic exponent z, t ∼ Lz, z < 2
for d < dc, and their ε expansions [41].
Let us now discuss the correspondence between the

active-absorbing phase transitions for C-DP and depinning.
For simplicity consider a spatially uniform initial condition
ϕðx; t ¼ 0Þ ¼ ϕ, such that the initial driving force acting
on the interface in Eq. (10) is uniform, fðxÞ ¼ f. We now
set the control parameter m → 0 so that there is a
globally active phase corresponding to an interface
moving at constant steady-state mean velocity _uðx; tÞ ¼
v ∼ ðf − fcÞβ > 0, if f > fc. Here fc is the depinning
threshold force, in principle calculable once the correlator
Δ0 is known. Translating to C-DP, it implies an active phase
with ρ > 0, when aþ γϕ > γfc, and a phase transition
where ρ vanishes with the same exponent β as a function
of the distance to criticality. Because of a symmetry of
the interface problem, β ¼ νðz − ζÞ ¼ ðz − ζÞ=ð2 − ζÞ.
This gives ρ ¼ _u ∼ t−θ at criticality with θ ¼ 1 − ζ=z,
e.g., as response to a (large) spatially uniform perturbation
at t ¼ 0þ, in the limit of v → 0þ. In the language of APT
[16], this is a steady-state exponent.
Let us now consider the protocol for avalanches in the

absorbing phase, near criticality. In the sandpile model (e.g.,
in numerical simulations for Manna) one usually starts from
an initial condition with nonvanishing activity ρðx; 0Þ ¼
_uðx; 0Þ ≥ 0, either adding a single grain or adding grains in
an extended region. This generates an avalanche that stops
when ρðx; tÞ ¼ 0 for all x. For the elastic manifold it is
equivalent to having the interface at rest up to time t ¼ 0, and
then increasing the force by _uðx; 0Þ. This is repeated until
one reaches the steady state. It is known for interfaces that
under this procedure the system reaches the Middleton
attractor, a sequence of well-characterized metastable states
between successive avalanches [54]. Avalanches with this
statistics have well-defined exponents [13,55,56].
To summarize, along the line γ ¼ b, we presented an

exact mapping in any dimension, between the C-DP
equations (1) and (2) and a driven interface with over-
damped dynamics, subject to a quenched random force
Fðuðx; tÞ; xÞ with correlations (16), in a parabolic well.
This confirms the beautiful numerical observation of
Ref. [45] that Manna sandpiles, the Oslo model, C-DP,
and disordered elastic manifolds have the same renormal-
ized effective disorder correlator. If one accepts that the
Manna class coincides with C-DP, it establishes the long-
sought-for mapping to disordered elastic interfaces [57].
Our exact mapping extends beyond the stationary state and
allows us to study the evolution from any initial state.
Some remarks are in order. The interface equation (14)

with the choice of correlator (15) possesses a special
Markovian property, which it inherits from the force
evolution equation (7) (for κ ¼ 0), and which allows it to
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be solved without storing the full random-force landscape.
The latter is constructed as the avalanche proceeds; hence, is
determined only for u ≤ uðx; tÞ. This property was noted in
[56,58] and can be used for efficient numerics [56,59].
The limit γ → 0 is also of interest. If one keeps κ ¼ 0,

i.e., b → 0, one sees from (10) and (11) that in that limit

_uðx;tÞ− _uðx;t¼0Þ¼ ½∇2−m2�uðx;tÞþ ~Bx(uðx;tÞ): ð17Þ
This is the Brownian force model: It provides the mean-
field theory for avalanches of an interface [13,60,61], and,
hence, also for C-DP, in d ≥ 4. If we keep b > 0, the limit
γ → 0 is towards DP.
Let us finally discuss C-DP for κ ≠ 0, i.e., away from the

line γ ¼ b in Eq. (3). If the new source term κ _u2, which
appears in Eq. (7) for ∂tF , were directly inserted into
Eq. (8) for _u, the mapping to the interface would fail, as
such a term is relevant [62]. Fortunately, κ _u2 is screened by
the disorder, and is only marginal. To show this, consider
the additional contribution to Eq. (11),

F retðx; tÞ ¼ −κ
Z

t

0

dt0 _uðx; t0Þ2e−γ½uðx;tÞ−uðx;t0Þ�: ð18Þ

Integrating by parts, and inserting into Eq. (9), we obtain

b
γ
∂tuðx; tÞ ¼ ½∇2 −m2�uðx; tÞ þ Fðuðx; tÞ; xÞ þ fðxÞ

þ κ

γ

Z
t

0

dt0üðx; t0Þe−γ½uðx;tÞ−uðx;t0Þ�

þ
�
b
γ
_uðx; 0Þ − fðxÞ

�
e−γuðx;tÞ: ð19Þ

Note that the boundary term in the integration by part has
changed the friction coefficient by κ=γ. This equation of
motion is equivalent to the C-DP equations (1) and (2) for
ρðx; tÞ ¼ _uðx; tÞ with initial data _uðx; 0Þ, ϕðx; 0Þ. It is a
salient result of our Letter. Note that this results from a
simple change of variables, which maps a system with
annealed noise (the C-DP) to a system with quenched
noise (the interface); as such, it bears some analogy to the
Cole-Hopf transformation used to solve the Kardar-Parisi-
Zhang (KPZ) equation.
The first line in Eq. (19) describes the standard over-

damped equation of motion of the interface, with the same
random force Fðu; xÞ as before, but with a new friction
coefficient b=γ. The third line depends on the initial
condition. It rapidly decays to zero, and can be neglected
in the stationary regime. The second line is a new memory
term. We argue that it is marginally irrelevant: Consider
the large-γ limit, and replace e−γz → ð1=γÞδðzÞ; hence,
e−γ½uðx;tÞ−uðx;t0Þ� → ½1=γ _uðx; tÞ�δðt − t0Þ. The second line of
(19) then becomes ðκ=γ2Þ∂t ln _uðx; tÞ þOðγ−3Þ, where
each new power in the 1=γ expansion comes with a power
of 1=u ∼ L−ζ and is more and more irrelevant [63]. Hence,
we conclude that the universality class of C-DP and that of
QEW should be the same, even for b ≠ γ.

The present work calls for further studies: First, Eq. (19)
can be analyzed using FRG to confirm our conclusions and
to explore this unusual interface dynamics. Our Letter
opens the way to study, within a common RG framework, a
variety of models ranging from interfaces to absorbing
phase transitions. It can be extended to long-range elasticity
(long-range toppling), or to a variety of perturbations. The
simplest extension is to add m2 _wðx; tÞ to each of Eqs. (1)
and (2) in order to reproduce the standard driving for the
interface [12]. Another extension is the crossover to DP, as
both γ and b are small.
Second, Eq. (19) permits us to study initial conditions,

i.e., to disentangle transients from properties of the
Middleton attractor. This allows us to treat avalanches
with localized seeds in the context of APTs, used to define
spreading exponents. For example, the survival probability
in C-DP, Psurv

C-DPðtÞ ∼ t−δ, is related to the avalanche-duration
distribution at depinning, PdepðTÞ ∼ T−α, via δ ¼ α − 1 ¼
ðd − 2þ ζÞ=z. We checked that, indeed, δ ¼ 0.17 and 0.48
in d ¼ 1 and 2, for both depinning (see Table 2 of [55]) and
Manna sandpiles [19,64].
Third, since our mapping is local in space, it can be

extended to finite-size systems at m ¼ 0. Imposing
ρðx; tÞ ¼ ϕðx; tÞ ¼ 0 at the boundary corresponds to the
common choice to let grains “fall off.” Here it implies
uðx; tÞ ¼ _F ðx; tÞ ¼ 0 at the boundary.
Finally, one should understand the cusp of Ref. [45] in a

more general setting. Some challenging questions include
whether the quenched KPZ class and DP with quenched
disorder [16] can be treated similarly.
In conclusion, we provide an exact mapping from the

field theory of a reaction-diffusion system with a con-
servation law, the C-DP system of Eqs. (1) and (2), to a
continuum model of an interface driven in a random
landscape. Using universality we show that the C-DP class
and—if we accept its equivalence to the Manna class—
Manna stochastic sandpiles, as well as the quenched
Edwards-Wilkinson model, belong to a single and, hence,
very large, universality class which spans self-organized
criticality, avalanches in disordered systems, and reaction-
diffusion models. This points towards a unified field theory
for these systems using functional RG. It also defines a
framework for probabilists to put this claim on rigorous
grounds, as was recently done for the KPZ class [65,66].
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