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We show that it is possible to use a massless field in the vacuum to communicate in such a way that the
signal travels arbitrarily slower than the speed of light and such that no energy is transmitted from the
sender to the receiver. Instead, the receiver has to supply a signal-dependent amount of work to switch his
detector on and off. This type of communication is related to Casimir-like interactions, and it is made
possible by dimension—and curvature—dependent subtleties of Huygens’ principle.
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Communication by means of massless quantum fields
is normally discussed in terms of the exchange of field
quanta. Typically, a sender emits photons—which carry
energy along null geodesics—that are then absorbed by a
receiver. The receiver has to intercept the beam of light, or
he misses the signal. In this Letter, we introduce a method
of communication via massless quantum fields that breaks
with each point of the just-mentioned intuitive under-
standing: (1) No emission or absorption of real quanta
is necessary, (2) the information flow need not be carried
by an energy flow, and (3) the information flow can be
arbitrarily slower than light, despite the field being
massless.
The fact that waves of massless fields propagate at

exactly the speed of light is merely a peculiar feature of
ðnþ 1ÞDMinkowski spacetime, for odd n ≥ 3. When there
is generic curvature, or when the spatial dimension is even,
then waves of massless fields propagate both on as well as
inside the light cone [1–3]. Here, we translate this classical
wave phenomenon into quantum field theory (QFT) and
analyze the implications for quantum communication.
Surprisingly, when applied to QFT, we find that the

resulting signal transmission effects appear already at the
leading order in perturbation theory. These are not emission
and absorption processes of real photons, which only
appear at subleading order. Indeed, we find that slower-
than-light quantum signals do not require the transmission
of energy from the sender to the receiver. Instead—much as
for a collect call—the receiver has to provide energy for the
detection of the signal.
The strong Huygens’ principle in QFT.—The Green’s

functions of the massless Klein-Gordon field in ð3þ 1ÞD
Minkowski space have support only on the light cone.
Hence, any disturbances of the field propagate strictly
along null geodesics. This classical phenomenon is called
the strong Huygens’ principle [1,2].
In QFT, communication via the field is possible if

and only if the commutator between the field at two events

does not vanish [4–8]. The commutator is given by the
Green’s function ½ϕðx; t1Þ;ϕðy; t2Þ� ¼ iGðx; t1; y; t2Þ1,
where G ¼ Gadv − Gret; thus, the commutator always
vanishes outside the light cone. The strong Huygens’
principle therefore manifests itself in QFT through the
commutator of the field: In ð3þ 1ÞD Minkowski space,
the commutator is only supported on the light cone. In
ð1þ 1ÞD and ð2þ 1ÞD, the commutator is nonvanishing
inside the light cone. Namely, in ð1þ 1ÞD it takes the
constant value ½ϕðx; t1Þ;ϕðy; t2Þ� ¼ i=2 when ðy; t2Þ is in
the future light cone of ðx; t1Þ. In 2þ 1 dimensions, the
commutator takes these values inside the light cone,

½ϕðx; t1Þ;ϕðy; t2Þ� ¼
i
2π

sgnðt2 − t1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt1 − t2Þ2 − jx − yj2

p : ð1Þ

Hence, communication between timelike separated points,
which is impossible in ð3þ 1ÞD flat spacetime, is possible
in 1þ 1 and 2nþ 1 dimensions and in generic, even
ð3þ 1ÞD, curved spacetimes.
Setup.—We study communication between two Unruh-

DeWitt (UDW) detectors [4,5,9]. This model captures
fundamental features of light-matter interactions when
there is no exchange of orbital angular momentum [10–12].
We consider two pointlike detectors, referred to as Alice
and Bob, both at rest at some fixed distance L from each
other. The total interaction Hamiltonian HI ¼ HI;A þHI;B

is the sum of the two detector-field interaction
Hamiltonians. In the interaction picture,

HI;dðtÞ ¼ λdηdðtÞmdðtÞϕðxd; tÞ: ð2Þ

Here, d ∈ fA; Bg, and λd is the coupling strength; ηdðtÞ
controls the switching, mdðtÞ ¼ jeihgjeiΩdt þ jgiheje−iΩdt

is the detector’s monopole moment, and ϕðxd; tÞ is the
field operator at the detector’s location. The detectors’ free
Hamiltonian is Hd ¼ Ωdjedihedj with energy gap Ωd.

PRL 114, 110505 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 MARCH 2015

0031-9007=15=114(11)=110505(5) 110505-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.110505
http://dx.doi.org/10.1103/PhysRevLett.114.110505
http://dx.doi.org/10.1103/PhysRevLett.114.110505
http://dx.doi.org/10.1103/PhysRevLett.114.110505


We calculate the time evolution of the system using
perturbation theory [6]. Alice, the sender, couples to the
field first. We assume that Alice switches off her detector
before Bob, the receiver, switches his detector on. Figure 1
depicts the setup:We assume that we have supp ηA ⊆ ½0; TA�
and supp ηB ⊆ ½T1; T2� with TA < T1, for the support of
the switching functions.As initial state,we assume a product
of an arbitrary state of the field ρ and pure states for Alice’s
and Bob’s detectors

jA0i ¼ αAjeAi þ βAjgAi; jB0i ¼ αBjeBi þ βBjgBi:
ð3Þ

Timelike signaling.—We split Bob’s excitation proba-
bility PeðtÞ for t > T1 into three contributions: Bob’s
excitation probability jαBj2 due to his initial state, Bob’s
excitation probability RðtÞ due to noise, and the signaling
contribution SðtÞ,

PeðtÞ ¼ jαBj2 þ RðtÞ þ SðtÞ: ð4Þ
Here, the noise-caused probability, RðtÞ, for Bob’s detector
to be found excited has two sources. One source of noise
is the switching that couples Bob to the field. The second
source of noise in RðtÞ is the quantum fluctuations of the
field that Bob picks up once Bob is coupled to the field.
RðtÞ is independent of Alice; i.e., it contains no dependence
on λA [6].
The signaling contributions SðtÞ determine how Bob’s

excitation probability is modulated by Alice’s interaction
with the field. In an expansion of SðtÞ ∼ λAλBS2 þOðλ3Þ,
its leading order contribution is

S2ðtÞ ¼ 4

Z
t

T1

dt2ηBðt2Þ
Z

TA

0

dt1ηAðt1ÞReðα�AβAeiΩAt1Þ

× Reðα�BβBeiΩBt2Trðρ½ϕðxA; t1Þ;ϕðxB; t2Þ�ÞÞ;
ð5Þ

for t > T1. Here we used that the supports of ηA and ηB do
not overlap, see Fig. 1. Notice that in Eq. (5), the trace, i.e.,
the expectation of the commutator, is independent of the

state of the field. Therefore, while S is, of course,
dependent on the initial state of the field, its leading order
contribution S2 is independent of the state of the field.
Note that for S2 to be the leading order contribution to

SðtÞ we require that neither of the detectors starts out in an
energy eigenstate: α�dβd ≠ 0; d ∈ fA;Bg.
The signal, carried by SðtÞ, competes with the

quantum noise RðtÞ, and the question arises whether
there is a threshold level of noise above which communi-
cation is no longer possible. We will now show that,
within the perturbative regime, for any noise level, a finite
channel capacity can be achieved straightforwardly.
Correspondingly, we will also show that Bob has a better
than 50% success probability of guessing correctly an
equally distributed random bit sent by Alice.
Among the many ways in which Alice and Bob can

encode and decode a message, the following simple
protocol already provides a lower bound to the channel
capacity: Let Alice encode “1” or “0” by either or not
coupling her detector to the field. Bob afterwards tempo-
rarily couples his detector to the field, then measures the
energy of his detector. Depending on whether Alice’s
coupling increases or decreases Bob’s excitation proba-
bility, Bob interprets finding the excited (or ground) state as
his logical “1” (or “0”), or vice versa.
Now, when Alice encodes a 0 (through her inaction),

Bob has finite probabilities (q and 1 − q) to find either
1 or 0, due to quantum noise and his detector’s initial
probability distribution. If Alice chooses to send a 1
(by temporarily coupling her detector to the field), then
this changes Bob’s outcome probabilities to p and 1 − p. In
our case, q ¼ jαBj2 þ RðtÞ and p ¼ qþ jSðtÞj. Hence, the
channel allows Bob to improve his probability at guessing
Alice’s bit to 1

2
þ jSðtÞj; see Fig. 2.

We can also regard this system as a binary asymmetric
channel between Alice and Bob. These channels have the
following Shannon capacity [13]

C¼−qhðpÞþphðqÞ
q−p

þ log2ð1þ 2½(hðpÞ−hðqÞ)=ðq−pÞ�Þ; ð6Þ

where hðxÞ ¼ −xlog2ðxÞ − ð1 − xÞlog2ð1 − xÞ.

FIG. 1. Spacetime diagram of the setup. The dotted lines
indicate the first and the last light rays emanating from Alice.
The distance L between the detectors determines whether they are
spacelike, null, or timelike separated.

FIG. 2. Tree diagram for Bob guessing a random bit sent by
Alice. The probability for a correct guess is given by the sum of
the probabilities for the two correct outcomes out of the four
possible outcomes. Since in our setup p ¼ qþ jSðtÞj, his success
probability is 1

2
þ 1

2
ðp − qÞ ¼ 1

2
þ jSðtÞj > 1

2
.
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Crucially, the capacity is nonzero whenever p ≠ q,
as is the case for our channel whenever the signaling
contribution SðtÞ is nonvanishing. This means that the
channel between Alice and Bob possesses a finite capacity
that is never completely drowned out by the noise. In fact,
with the use of the leading order signaling contribution S2,
the channel capacity can be expanded as

C ∼ λ2Aλ
2
B

2

ln 2

�
S2

4jαBjjβBj
�

2

þOðλ6Þ; ð7Þ

which, at leading order, is independent of the field’s initial
state and shows a positive contribution to the channel
capacity if S2 ≠ 0.
As expected, the capacity (6) is not symmetric in λA; λB

(p depends only on λB and q depends on λA and λB), while
the small coupling expansion in Eq. (7) happens to be
symmetric in λA and λB. Interestingly, as C ∼ λ2Aλ

2
B, in the

weak coupling regime, any increase of Alice’s and Bob’s
couplings increases the capacity.
Note the appearance of the field commutator in Eq. (5),

which shows that signaling between timelike separated
UDW detectors is possible whenever the strong Huygens’
principle does not hold: if the commutator between two
points does not vanish, it is possible to couple two detectors
around those points to the field such that Eq. (5) does not
vanish and, thus, signaling is possible.
Remarkably, the signaling contribution (5) does not

contain an exchange of real energy-carrying quanta.
Indeed, energy-exchange processes (the sender’s detector
gets deexcited, emitting energy to the field, which
later excites the receiver) have amplitudes of order
OðλAλBÞ. Hence, they only contribute to PeðtÞ at Oðλ4Þ
(see Ref. [6]).
Notice that in ð1þ 1ÞD where the commutator is

constant, arbitrarily many spacelike separated receivers
could be arranged in the future light cone of Alice, such
that all receive the same signaling contribution to PeðtÞ.
Since the receivers are spacelike separated, they cannot
influence each other. This shows that while the signaling
contribution to hHBi is caused by Alice, it cannot be
energetically sourced by her or it would violate energy
conservation. We will see that the energetic cost of the
excitation of Bob’s detector is balanced by the work
required to switch his detector.
Energy budget of switching a detector.—It is known that

a single detector coupled to the vacuum can be excited by
switching it on and off. The more sudden the switching, the
larger the excitation probability [14]. In the following, we
compute how much work, on average, is required to switch
the detector.
When a single detector interacts with the field,

the system’s Hamiltonian is given by HðtÞ ¼
Hf þHd þHIðtÞ, the sum of the free field, free detector,
and the interaction Hamiltonian from Eq. (2). Since we

restrict ourselves to detectors at rest, the Hamiltonian is
explicitly time dependent only through ηðtÞ; hence,

d
dt

hHðtÞi ¼
�∂HIðtÞ

∂t
�

¼ ∂ηðtÞ
∂t hhIðtÞi; ð8Þ

where hIðtÞ ¼ λmðtÞϕðx; tÞ. Therefore, when the switching
function is zero, the detector and the field are decoupled
and each of the energy expectation values hHfi and hHdi
are conserved individually. For intervals during which ηðtÞ
is constant, but nonvanishing, only its sum is conserved,

hHðtÞi ¼ hHfi þ hHdi þ hHIðtÞi ¼ const: ð9Þ

Equation (8) shows that the total energy expectation only
changes when the coupling strength between field and
detector is altered. Integrating Eq. (8) yields the amount
ΔhHi by which a switching process changes the total
energy expectation value. This energy difference corre-
sponds to the average work that a switching process
requires.
For sharp switching functions, the time derivatives are

given by δ functions. Hence, ΔhHi is given by hhIi. When
the detector is switched on, the total energy expectation
value rises by ΔhHi ¼ hhIðt ¼ 0Þi. This is the average
work it takes to “pull” the detector’s switch. When
the detector is switched off, hHi drops by
ΔhHi ¼ −hhIðt ¼ TÞi. Note that hhIðtÞi can be positive
or negative, so in general a switching process can either
cost or yield energy. It is straightforward to show that
the energy cost ΔhHi for smooth switching functions
converges to the cost of a sharp switching hhIðtÞi, as the
switching functions approach sharp step functions.
If the state before the switching is a product state of field

and detector, the average energy cost of a sharp detector
switch is given by the product hhIi ¼ λhϕihmi. Hence,
it costs no energy to sharply switch a detector when the
expectation value of the monopole operator vanishes or
when the field is in a Fock state. Therefore, in particular,
when the field starts in the vacuum, the excitations that
remain after the detector is switched off are entirely
accounted for by the work it takes to decouple the detector
from the field.
Notice also that the fluctuations of the energy cost of a

sudden switching in the vacuum (∝ λ2hm2ϕ2i) are
unbounded. This is an artifact of pointlike detectors.
This kind of divergences is well known; see, e.g.,
Refs. [10,14–17]. The spurious divergences disappear
when using smooth switching functions or spatially
smeared detectors.
Energy budget of signaling.—The analysis of the

previous section carries over to multiple detectors. For
simplicity, we will in the following sections consider that
the field starts out in the vacuum state, i.e., ρ ¼ j0ih0j. The
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perturbative contributions of the time-evolved state fulfill
Eqs. (8) and (9) order by order in the coupling constants.
Among the leading order terms, the single detector

contributions Oðλ2AÞ and Oðλ2BÞ and the signaling contri-
butions OðλAλBÞ will each be balanced separately. Thus,
to understand the energy source for the timelike signals
discussed earlier, we focus on the signaling contributions
to the Hamiltonians’ expectations.
For times t ≥ T1, Alice remains uncoupled from the

field. So only HI;B is relevant for the interaction
Hamiltonian. Also, the signaling contributions to the
detector Hamiltonian HA cancel out as expected since,
otherwise, Bob would have means to signal into the past.
Assuming sharp switching (and ρ ¼ j0ih0j), the relevant

signaling contributions for T1 ≤ t ≤ T2 are

hhI;BðtÞi ¼OðλAλBÞ
4iλAλBReðα�BβBeiΩBtÞ

×
Z

TA

0

dt1Reðα�AβAeiΩAt1Þ

× Trðρ½ϕðxA; t1Þ;ϕðxB; tÞ�Þ ð10Þ

for the interaction Hamiltonian, whereas for hHBðtÞi ¼
ΩBPeðtÞ the signaling contribution is given by Eq. (5). The
signaling contribution to the field Hamiltonian is

hHfiðtÞ ¼OðλAλBÞ
4λAλB

Z
t

T1

dt2

Z
TA

0

dt1Reðα�AβAeiΩAt1Þ

× Reðα�BβBeiΩBt2Þ
Z

dnk
ð2πÞn

× Reðei½kðt1−t2Þ−k·ðxA−xBÞ�Þ: ð11Þ

The contributions to hhI;Bi and to hHBi are similar in
that they both contain the commutator of the field. The
contributions to hHfi contain the integral kernel of a
different distribution on spacetime. In ð1þ 1ÞD and
ð3þ 1ÞD Minkowski space, this distribution has support
only on the light cone. In 2þ 1 dimensions it has support
on the light cone and inside the future light cone.
Hence, in ð3þ 1ÞD Minkowski space the signaling

contributions vanish for timelike separated detectors,
because neither the commutator nor the distribution in
Eq. (11) have timelike support. Crucially, however, in the
presence of curvature, the commutator has support in the
timelike region, although it decays with distance [3].
Therefore, understanding the phenomena in lower-

dimensional flat space may provide insight into the
phenomena expected in curved ð3þ 1ÞD spacetimes: In
ð2þ 1ÞD the commutator (1) is proportional to the inverse
geodesic distance inside the light cone, a situation quali-
tatively similar to that of curved ð3þ 1ÞD spacetimes.
Notice also that in these cases, where the commutator
decays into the light cone, the channel naturally resets itself
after each use. This means that the channel can easily be

reused at some finite frequency. Remarkably, in ð1þ 1ÞD
Minkowski space only hHBi and hhI;Bi receive signaling
contributions for timelike separated detectors, whereas
hHfi remains unchanged. Thus, the ð1þ 1ÞD setting
provides a clean test bed to study the relation between
detector excitation and energy cost of switching the
detector. The study of lower-dimensional cases may also
be interesting considering that analog setups can implement
massless fields in ð1þ 1ÞD and ð2þ 1ÞD, e.g., in circuit
QED [18–20] or graphene [21].
1þ 1 Dimensions.—In 1þ 1 dimensions, the field

energy is not affected by signaling contributions between
two timelike separated detectors. Hence, any change in the
average detector energy hHBi is balanced by the interaction
Hamiltonian hhI;Bi only: Through the interaction with the
field, Alice changes the field state away from the vacuum.
The imprint Alice leaves in the field determines the
signaling contribution (10) to hhI;BðtÞi at all later times
t > TA. Hence, Alice influences the average energy cost it
takes Bob to switch his detector on or off.
In 1þ 1 dimensions we can solve Eq. (10) analytically,

hhI;BðtÞi ¼OðλAλBÞ 2λAλB
ΩA

ReðαBβ�Be−iΩBtÞ

× Im½αAβ�Aðe−iΩATA − 1Þ� ð12Þ

for t > TA þ L. For timelike separated detectors, the
signaling contribution to hHBi is given by the difference
between the values Eq. (12) takes when Bob’s detector is
switched on and off. Notice that, to leading order, Bob
cannot receive energy from Alice via the field because the
energy of the field has no contribution proportional λAλB;
i.e., Bob received information from Alice without receiving
energy from her.
2þ 1 Dimensions.—In 2þ 1 dimensions, there are

signaling contributions also to the field energy for timelike
separated detectors. This means all three parts of the
Hamiltonian, hHBi, hhI;Bi, and hHfi, are affected.
From Eq. (8) and the considerations thereafter, we

know that the sum of the signaling contributions to
hHBi and hHfi is equal to the signalling contributions to
hhI;BiðT1Þ − hhI;BiðT2Þ, i.e., the difference between the
work required to switch the detector on and off.
Figure 3 shows that for timelike separations the signaling

contributions to hHfi are much smaller and decay faster
than the ones to hHBi. Also, all signaling contributions
change sign when either of the detectors’ initial state is
replaced by an orthogonal state. This indicates that also in
2þ 1 dimensions the timelike signaling contributions
cannot be understood as absorption of energy that is sent
from Alice to Bob via the field. Instead, whether Bob’s
coupling to the field increases or decreases the energy of his
detector and the field depends on the specific properties of
the state that Alice prepared for the field by coupling her
detector to the field.
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Conclusions.—Intuitively, one may expect that informa-
tion sent from Alice to Bob in the vacuum via a massless
field necessarily travels at the speed of light. We showed
that this is not the case if the strong Huygens principle is
violated. This is generically the case in spacetimes of any
dimension if they possess curvature. And it is the case in
1þ 1 and ð2nþ 1ÞD spacetime even when flat. For the
latter cases, we worked out the properties of inside-the-light
cone communication explicitly.
In particular, we found that massless inside-the-light-

cone communication does not require the transmission of
energy from the sender to the receiver. Instead, the receiver
requires a signal-dependent amount of work to switch his
detector on and off. In this context, recall that the Casimir-
Polder effect also sets in when only a single particle is
coupled to a field [11]. In our scenario, Alice is modulating
the Casimir-Polder effect that arises from Bob’s local
interaction with the field. Indeed both, Casimir forces
and the type of communication described in this Letter
arise already at second order in perturbation theory [11].
This is in contrast to communication mediated by energy-
carrying quanta, which arises only from the fourth order in
perturbation theory.
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