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Machine learning, a branch of artificial intelligence, learns from previous experience to optimize
performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics,
and bioinformatics. A challenge is that machine learning with the rapidly growing “big data” could become
intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and
Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical
algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and
eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are
then used to implement supervised and unsupervised machine learning. The results demonstrate the
working principle of using quantum computers to manipulate and classify high-dimensional vectors, the
core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of
qubits, and may provide a new route to accelerate machine learning.
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There are two main types of machine learning tasks [1],
namely, supervised and unsupervised machine learning.
In supervised machine learning, the learner is provided a set
of training examples with features presented in the form of
high-dimensional vectors and with corresponding labels
to mark its category. The aim is to classify new examples
based on these training sets. A simple example is a spam
filter that sorts incoming Email into spam and nonspam
messages by comparing the new Email with old Email
already labeled by human. In unsupervised machine
learning, the system aims to classify the data into different
groups without prior information. An example of unsu-
pervised machine learning is to recognize the object from a
landscape background, i.e., to classify the pixels of the
image into two groups—the object and the background.
The core mathematical task for both the supervised and
unsupervised machine learning algorithm is evaluating the
distance and inner products between the high-dimensional
vectors to analyze the similarity between vectors, which
requires a time proportional to the size of the vectors on
classical computers. With the rapidly growing data size in
the modern world, such a task could pose a challenge even
for the latest supercomputers.
Recently, it has been shown by Lloyd, Mohseni, and

Rebentrost [2] that quantum computers, which are naturally
good at manipulating vectors and matrices, could provide
an asymptotically exponential speed-up over their classical
counterparts in performing some machine learning tasks
involving large vectors. Consider the task of assigning
N-dimensional vectors to one of k clusters, each with M

representative samples; a quantum computer takes time
O½logðMNÞ�. The exponential speed-up of the quantum
machine learning algorithm, and its potential wide appli-
cations, may make it one of the promising applications of
quantum computers [2–4], in addition to Shor’s factoring
algorithm [5–9], quantum simulation [10–14], and the
quantum algorithm for solving linear equation systems
[15,16].
In this Letter, we report proof-of-principle demonstra-

tions of the supervised and unsupervised quantum machine
learning algorithm [2] on a small-scale photonic quantum
processor. The core mathematical task is to assign two-,
four-, and eight-dimensional vectors (N ¼ 2; 4; 8) to two
different clusters with one reference vector (M ¼ 1) in each
cluster. The two clusters are labeled as A and B, each with
one reference sample vector ~vA and ~vB, respectively. To
classify the new sample which is represented by the vector
~u, one common method is to calculate and compare the
distance: DA ¼ j~u − ~vAj, and DB ¼ j~u − ~vBj. The new
sample is assigned to the cluster to which the distance is
smaller.
The vectors can be represented with quantum states

with a normalization factor, i.e., ~u ¼ jujjui, ~v ¼ jvjjvi. To
evaluate the distance j~u − ~vj, a key step in the quantum
machine learning algorithm [2] is to adjoin an ancillary
qubit to the states of the reference and new vectors, creating
an entangled state in the form

jφi ¼ ðj0iancjuinew þ j1iancjvirefÞ=
ffiffiffi
2

p
: ð1Þ
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Next, a single-qubit measurement is made on the
ancillary qubit alone (the other qubits are simply ignored),
projecting it onto the state

jϕi ¼ ðjujj0i − jvjj1iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

q
: ð2Þ

The success probability p of this projective measurement
can be estimated by repeated measurements. Remarkably,
the inner product between jui and jvi can be directly
calculated from the p:

hujvi ¼ ð0.5 − pÞðjuj2 þ jvj2Þ=jujjvj; ð3Þ
and the distance between ~u and ~v can then be obtained:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðjuj2 þ jvj2Þ

q
: ð4Þ

It is important to note that such an estimation can achieve a
desired statistical accuracy simply by a sufficient number of
repeated measurements, but is independent of the size (N)
of the vectors, which gives a quantum speed-up.
This algorithm can be understood intuitively; the more

difference between the pure states jui and jvi, the more
entangled the Eq. (1) is. For examples, if jui and jvi are
identical, then the ancillary qubit is in the state ðj0i þ j1iÞ=ffiffiffi
2

p
, separable from the vector qubits, and p ¼ 0, D ¼ 0.

If jui and jvi are orthogonal, then the Eq. (1) is maximally
entangled, and p ¼ 0.5, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj2

p
.

In our experiment, we use single photons as qubits,
where j0i and j1i are encoded with the photon’s horizontal
(H) and vertical (V) polarization, respectively. A schematic
drawing of the experimental setup is illustrated in Fig. 1.
Polarization-entangled photon pairs are generated by spon-
taneous parametric down-conversion [17] and prepared in
the state

ðj0iancj0ivec þ j1iancj1ivecÞ=
ffiffiffi
2

p
: ð5Þ

One photon (anc) is used as the ancillary qubit, and the other
one (vec) will be used to encode the reference and incoming
vectors using Sagnac-like interferometers (see Fig. 1).
To generate three- and four-photon entanglement

resource states, we create two entangled photon pairs.
Two single photons, one from each pair, are temporally and
spatially superposed on a polarizing beam splitter (PBS).
We select the events where one and only one single photon
emits from each output. It can be concluded that the four
photons are either all H polarized or V polarized, two cases
that are quantum mechanically indistinguishable when all
the other degrees of freedom of the photons are erased
(see the caption of Fig. 1), thus projecting the four photons
into the Greenberger-Horne-Zeilinger entangled state [18]:
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FIG. 1 (color). Experimental setup for quantum machine learning with photonic qubits. Ultraviolet laser pulses with a central
wavelength of 394 nm, pulse duration of 120 fs, and a repetition rate of 76 MHz pass through two type-II β-barium borate (BBO)
crystals with a thickness of 2 mm to produce two entangled photon pairs. The photons pass through pairs of birefringent compensators
consisting of a 1-mm BBO crystal and a HWP to compensate the walk-off between horizontal and vertical polarization, and are prepared
in the quantum state: ðjHijVi þ jVijHiÞ= ffiffiffi

2
p

. Two extra HWPs placed in arm 3 and anc are used to transform the state into
ðjHijHi þ jVijViÞ= ffiffiffi

2
p

. Two single photons, one from each pair, are temporally and spatially superposed on a PBS to generate a four-
photon entangled state: ðjHijHijHijHi þ jVijVijVijViÞ= ffiffiffi

2
p

. The photons 1, 2, and 3 are sent to Sagnac-like interferometers, where
each single photon splits into two spatial modes by the PBS with regard to its polarization, and recombines on a nonpolarizing beam
splitter (NBS). Various vectors are independently encoded into the two spatial modes using HWPs. The specially designed beam splitter
cube is half-PBS coated and half-NBS coated. High-precision small-angle prisms are inserted for fine adjustments of the relative delay
of the two different paths. The photons are detected by five single-photon detectors (quantum efficiency > 60%), and the two four-
photon coincidence events, D3D2D1DT and D3D2D1DR, are simultaneously registered by a homemade FPGA-based coincidence unit.
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ðj0iancj000ivec þ j1iancj111ivecÞ=
ffiffiffi
2

p
: ð6Þ

By projecting one of the four photons into ðjHi þ jViÞ=ffiffiffi
2

p
, we can reduce the four-photon state (6) to a three-

photon entangled state:

ðj0iancj00ivec þ j1iancj11ivecÞ=
ffiffiffi
2

p
: ð7Þ

The two-, three-, and four-photon entangled states,
Eqs. (5)–(7), are the entanglement resource used for the
classification of the two-, four-, and eight-dimensional
vectors, respectively. We characterize the created multi-
photon entangled state using the method of entanglement
witness. We obtain the fidelity [19] for the two-, three-, and

four-photon entangled states to be 0.94, 0.73, and 0.75,
respectively, thus, prove the presence of genuine multipar-
tite entanglement [20].
A 2n-dimensional vector is encoded with the polarization

state of n photonic qubits. For example, a four-dimensional
vector, (3.42, 1.24, 1.97, 0.72), is represented by the
composite quantum state of two single photons with
normalization,

∣u2u1∣ × ju2u1i ¼ 4.2 × ð0.866j0i þ 0.5j1iÞ
⊗ ð0.94j0i þ 0.342j1iÞ: ð8Þ

To encode these vectors into the entanglement resource
states, Eqs. (5)–(7), we send the single photons through a
PBS where the photon is split into two spatial modes
according to its polarization. At the two separate spatial
modes, controlled unitary operations can be implemented
deterministically and independently [21]. Thus, we can
transform, for instance, the two-photon entangled state (5)
into ðj0iju1inew þ j1ijv1irefÞ=

ffiffiffi
2

p
, where the state ju1i and

jv1i can be arbitrarily set using wave plates. The two spatial
modes are then recombined on a nonpolarizing beam
splitter. In this way, we create the following two-, three-,
and four-photon entangled states in the form of Eq. (1):

jφ2i ¼ ðj0iancju1inew þ j1iancjv1irefÞ=
ffiffiffi
2

p

jφ4i ¼ ðj0iancju2u1inew þ j1iancjv2v1irefÞ=
ffiffiffi
2

p

jφ8i ¼ ðj0iancju3u2u1inew þ j1iancjv3v2v1irefÞ=
ffiffiffi
2

p
ð9Þ

for classifying two-, four-, and eight-dimensional vectors,
respectively.

(a)

(b)

FIG. 2 (color). Theoretical prediction (a) and experimental
results (b) for classifying two-dimensional vectors into two
clusters. The red and blue cross are reference vectors. The
evaluated value of difference of the distances of each tested
vector to the two reference vectors is coded as the fill color. The
result of classification is coded as the edge color (blue ¼ A,
red ¼ B). The gray line is where the distances are the same in
theory. The data acquisition time is 1 sec for each vector,
collecting about 10000 events. The statistical standard deviation
is much smaller than the error caused by the imperfection of the
entanglement state; thus, error bars are omitted. The data are
represented in polar coordinate.

TABLE I. Experimental results for classifying four-dimensional
vectors into two clusters. Reference vector A is (1, 0, 0, 0) and B is
(0, 0, 1, 1). The data acquisition time is 2 min for each vector,
collecting about 500 events.

Test vectors DA−DB
Theory Exp:

Group Correct?

1 (2.00, 0.00, 0.00, 0.00) −1.45 −0.93 A ✓

2 (0.00, 0.00, 0.00, 2.00) 0.82 0.50 B ✓

3 (0.35, 0.20, 0.00, 0.00) −0.79 −0.71 A ✓

4 (0.23, 0.19, 0.08, 0.07) −0.54 −0.51 A ✓

5 (1.32, 3.62, 1.57, 4.32) 0.74 0.48 B ✓

6 (0.15, 0.17, 0.82, 0.98) 1.26 0.72 B ✓

7 (0.18, 0.10, 1.02, 0.59) 0.98 0.76 B ✓

8 (0.97, 0.17, 0.17, 0.03) −1.37 −0.93 A ✓

9 (0.68, 0.25, 0.00, 0.00) −1.18 −0.79 A ✓

10 (0.83, 0.48, 1.44, 0.83) 0.67 0.17 B ✓

11 (1.27, 1.06, 3.48, 2.92) 1.13 0.76 B ✓

12 (0.40, 0.40, 0.40, 0.40) −0.10 −0.26 A ✓

13 (0.09, 0.15, 0.49, 0.85) 0.80 0.55 B ✓

14 (0.10, 0.55, 0.06, 0.32) −0.19 −0.28 A ✓

15 (1.94, 0.34, 0.34, 0.06) −1.22 −1.10 A ✓

16 (3.42, 1.24, 1.97, 0.72) −0.34 −0.39 A ✓

17 (0.66, 0.00, 1.80, 0.00) 0.40 −0.02 A ⨯
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Figures 2(a) and 2(b) display theoretical prediction
(ideal) and experimental results of entanglement-based
classification of two-dimensional vectors. The randomly
chosen reference vectors are ~vA ¼ ð1.50; 0.55Þ and
~vB ¼ ð0.86; 2.35Þ, plotted in polar coordinate as blue
and red rectangular crosses, respectively. For each new
vector juiinew, i ¼ 1; 2;…; 100, two-photon entangled
states jφ2i are constructed, and the distances from ~ui to
~vA and ~vB (denoted by DA and DB) are evaluated from the
success probability of the projective measurements on the
ancillary photon.
The difference of the distances, DA −DB, is color

coded in the fill color of each of the data points in
Figs. 2(a) and 2(b). The sign of DA −DB dictates
the result of the classification: if DA −DB < 0, it is
categorized to cluster A (plotted as the blue edge
color); if DA −DB > 0, it is categorized to cluster B
(plotted as red edge color). The boundary of the two
clusters (where DA ¼ DB) is illustrated as the gray line in
Figs. 2(a) and 2(b). It can be seen that, of the 100 tested

samples, two are experimentally misclassified. The mis-
classification happens for vectors close to the boundary
where the absolute error (with an average of ∼0.27),
caused by the imperfect two-photon entanglement and
dark counts of the single-photon detectors, becomes com-
parable to jDA −DBj.
Similar methods can be applied to the classifications of

four- and eight-dimensional vectors based on the construc-
tion of three- and four-photon entanglement, with the
experimental results listed in Tables I and II, respectively.
The precision of distance evaluation is affected by the
state fidelity (∼75%) of the multiphoton entangled state,
which is lower compared to that of the two-photon
entangled state (∼94%), mainly caused by double pair
emission in parametric down-conversion, the imperfect
interference of independent photons on the PBS [18],
and the phase fluctuations in the Sagnac interferometers.
Among the randomly selected 17 and 9 vectors listed
in Tables I and II, respectively, there is one sample
misclassified.

TABLE II. Experimental results for classifying eight-dimensional vectors into two clusters. Reference vector A is
(1, 0, 0, 0, 0, 0, 0, 0) and B is (0, 0, 0, 0, 0, 0, 0, 1). The data acquisition time is 4 min for each vector, collecting about
500 events.

Test vectors DA−DB
Theory Exp:

Group Correct?

1 (2.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) −1.24 −0.84 A ✓

2 (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.60) 0.77 0.55 B ✓

3 (1.77, 0.00, 0.00, 0.00, 1.24, 0.00, 0.00, 0.00) −0.92 −0.52 A ✓

4 (0.40, 0.23, 0.11, 0.06, 0.03, 0.02, 0.01, 0.01) −0.45 −0.14 A ✓

5 (0.00, 0.00, 1.23, 1.23, 0.00, 0.00, 0.33, 0.33) 0.17 0.10 B ✓

6 (0.30, 0.03, 0.30, 0.03, 1.12, 0.10, 1.12, 0.10) −0.11 −0.24 A ✓

7 (0.42, 0.90, 0.35, 0.76, 0.00, 0.00, 0.00, 0.00) −0.28 −0.21 A ✓

8 (0.54, 0.54, 0.00, 0.00, 0.54, 0.54, 0.00, 0.00) −0.43 −0.50 A ✓

9 (0.11, 1.24, 0.19, 2.15, 0.06, 0.72, 0.11, 1.24) 0.40 −0.17 A ⨯
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FIG. 3 (color). Demonstration of unsupervisedmachine learning. (a) Eight gray circles, labeled fromA toH, are two-dimensional vectors
to be classified. (b) A random classification is initialized, where A and B belong to the red group andC,D,E,F,G,H belong to blue group.
(c) We use the entanglement-based method presented in this Letter to experimentally evaluate the distance from each vector to the other
vectors within a group. Then the mean distance to both the red and the blue group is calculated, DA- red ¼ 0.12, DA- blue ¼ 0.67,
DB- red ¼ 0.12, DB- blue ¼ 0.65, DC- red ¼ 0.41, DC- blue ¼ 0.68, DD- red ¼ 0.33, DD- blue ¼ 0.58, DE- red ¼ 0.73, DE- blue ¼ 0.59,
DF- red ¼ 0.84, DF- blue ¼ 0.57, DG- red ¼ 0.91, DG- blue ¼ 0.57, DH- red ¼ 0.77, DH- blue ¼ 0.50. It can be seen that C and D are closer
to the red group but were wrongly classified into the blue group, whose labels are therefore changed. The labels of the other six vectors
remain unchanged. (d) The optimizing process is repeated in the new configuration until there is no change. In this configuration every
vector is in the group with a closer mean distance, and the system can confirm the configuration as an ultimate classification result.
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The quantum mechanical way of evaluating the vector
distance demonstrated above is the core mathematical
subroutine for other machine learning tasks, for example,
the supervised nearest-neighbor algorithm and unsuper-
vised machine learning algorithm. In the supervised
nearest-neighbor algorithm, each test vector is analyzed
by evaluating the distance between itself and all the training
vectors, and then categorized into the group of the nearest
training vector. When new training vectors are offered,
the system will adjust the judgment of classification
by analyzing the distances in the new configuration.
An example with training sample M ¼ 2 is shown in
Supplemental Fig. S1 [22].
In unsupervised machine learning, no training vectors

are provided, and the system needs to realize a reasonable
classification by iterating to calculate the distance between
different vectors. The algorithm includes three steps.
(i) Initialize a random classification. (ii) For each vector
vi, the learner calculates the distance between vi and all
vectors in a group. The vi is classified into a group to which
the average distance is minimal. (iii) Repeat step 2 until no
vector needs to change its group. An example with M ¼ 4
is demonstrated in Fig. 3.
Note that the current experimental scheme can, in

principle, achieve an exponential speed-up with respect
to the dimension N of the vectors, but not to the number of
training samplesM. To demonstrate a speed-up in numbers
of manifold vectorsM, future studies are planned to design
quantum circuits involving M þ 1 level qudits. High-
dimensional quantum states can be encoded using, for
example, a photons’ degree of freedom of orbital angular
momentum [23].
In summary, we have performed the first experimental

demonstration of machine learning on a photonic quantum
computer. Our work demonstrates that the manipulation of
high-dimensional vectors and the estimation of the distance
and inner product between vectors, a ubiquitous task in
machine learning, can be naturally done with quantum
computers, thus proving the suitability and potential power
of quantum machine learning. The ability of manipulating
large vectors—combined with previously realized methods
for solving systems of linear equations [15,16] and
Hamiltonian simulation [24]—on quantum computers,
may provide a useful quantum toolkit for dealing with
the “big data.”
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