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A randomly walking quantum particle evolving by Schrödinger’s equation searches on d-dimensional

cubic lattices in Oð ffiffiffiffi
N

p Þ time when d ≥ 5, and with progressively slower runtime as d decreases. This
suggests that graph connectivity (including vertex, edge, algebraic, and normalized algebraic connectiv-
ities) is an indicator of fast quantum search, a belief supported by fast quantum search on complete graphs,
strongly regular graphs, and hypercubes, all of which are highly connected. In this Letter, we show this
intuition to be false by giving two examples of graphs for which the opposite holds true: one with low
connectivity but fast search, and one with high connectivity but slow search. The second example is a novel
two-stage quantum walk algorithm in which the walking rate must be adjusted to yield high search
probability.
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Introduction.—Despite ten years elapsing since the
introduction of continuous-time quantum walk algorithms
that search on graphs [1], there is still no comprehensive
theory as to which graphs support fast quantum search.
Nevertheless, much work has been done to further our
understanding. For example, we recently showed that
global symmetry is unnecessary for fast quantum
search [2].
Regarding specific graphs, a randomly walking quantum

particle evolving by Schrödinger’s equation searches on the
complete graph, strongly regular graphs, and the hypercube
in optimal Θð ffiffiffiffi

N
p Þ time, the first of which is precisely the

continuous-time analogue of Grover’s algorithm [1–4].
Examples of these graphs are shown in Fig. 1.
Additionally, such a particle can search on d-dimensional
cubic lattices in Θð ffiffiffiffi

N
p Þ total time when d ≥ 5, and with

progressively slower runtimes as d decreases [1,5,6], as
shown in Table I.
One might suspect that fast search occurs when graphs

are highly connected, as suggested by [1]. In this Letter,
however, we show this intuition to be false by giving two
examples of graphs for which the opposite holds true: one
with low connectivity but fast search, and one with high
connectivity but slow search; they are shown in Figs. 2
and 3, respectively. To do this, we first introduce four
different ways to measure graph connectivity. Then we
detail how a randomly walking quantum particle searches
on a graph. Finally, we determine the runtimes of our two
examples.
Measures of connectivity.—The two most common ways

to measure connectivity are vertex connectivity and edge
connectivity, which are how many vertices or edges must
be removed to make a graph disconnected. For example,

Fig. 2 has vertex and edge connectivities of 1 because
removing the yellow or green vertex disconnects the graph,
and so does removing the edge between them. Note that
vertex connectivity is upper bounded by the edge con-
nectivity, and both are upper bounded by the minimum
degree of the graph. For the graphs in this Letter, the vertex
and edge connectivities are equal.
Connectivity can also be measured using eigenvalues.

The algebraic connectivity of a graph is the second-smallest
eigenvalue λ1 of its graph Laplacian L ¼ D − A, where
Djj ¼ degðjÞ is a diagonal matrix with the degree of each
vertex, and Aij ¼ 1 if i and j are adjacent and 0 otherwise is
the adjacency matrix [7]. Chosen this way, L is positive
semidefinite. Its smallest eigenvalue λ0 is 0, and it corre-
sponds to the equilibrium state of diffusion. Since our
graphs are connected, λ1 is positive and quantifies how well
diffusion occurs on the graph.
This can be improved by dividing Lij by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
degðiÞ degðjÞp

so that the diagonal terms become 1 and the off-diagonal

(a) (b) (c)

FIG. 1 (color online). (a) The complete graph with 6 vertices.
(b) A strongly regular graph (Paley graph) with parameters
(9, 4, 1, 2). (c) The four-dimensional hypercube. Without loss
of generality, a marked vertex is colored red, and identically
evolving vertices are identically colored.
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terms become −1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
degðiÞ degðjÞp

when i and j are
adjacent and 0 otherwise. The eigenvalues of this “nor-
malized” Laplacian L are no longer dependent on the
number of vertices, and we take the second-smallest
eigenvalue to be the normalized algebraic connectivity
[8]. Note if the graph is k-regular, then the normalized
Laplacian is related to the adjacency matrix and standard
Laplacian by L ¼ I − A=k ¼ L=k.
For the graphs we have introduced, all four of these

connectivities are shown in Table II; see [9] for their
references and derivations. With these in place, let us
introduce the quantum search model and then find the
runtimes of the examples (Figs. 2 and 3), showing they are
faster or slower, respectively, than their connectivities
might otherwise lead us to believe.
Quantum search on graphs.—The vertices of the graph

correspond to computational basis statesfj0i;j1i;…;jN−1ig
of an N-dimensional Hilbert space. The system jψðtÞi
begins in an equal superposition of all the vertices
jsi ¼ P

N−1
i¼0 jii= ffiffiffiffi

N
p

. Then it evolves by Schrödinger’s
equation with Hamiltonian H ¼ γL − jaihaj, where γ is
the jumping rate (i.e., amplitude per time), L ¼ D − A is
the graph Laplacian, and jai is the “marked” vertex we are
searching for (i.e., the red vertex in Figs. 1, 2, and 3). For
a k-regular graph, D ¼ kI, so we can drop it by rezeroing
the energy. Then the search Hamiltonian is

H ¼ −γA − jaihaj: ð1Þ
On the complete graph (i.e., Grover’s problem), the

system evolves in a two-dimensional subspace, and the
squared overlaps of jsi and jaiwith the eigenstates jψ0;1i of
H are shown in Fig. 4. When γ is away from its critical
value of γc ¼ 1=N, then the initial equal superposition jsi is
approximately jψ0i or jψ1i for large N, so the system
approximately evolves only by phase multiplication. When
γ ¼ γc, however, the eigenstates are

jsi ∝ jψ0i þ jψ1i
jai ∝ jψ0i − jψ1i; ð2Þ

with an energy gap of ΔE ¼ 2=
ffiffiffiffi
N

p
[1]. Therefore the

system evolves from jsi to jai in time π=ΔE ¼ π
ffiffiffiffi
N

p
=2 ¼

Θð ffiffiffiffi
N

p Þ [4]. This can also be proved using degenerate

perturbation theory [2], as we show rigorously for the next
two examples in [1], but in this Letter we use the same
graphical explanation as above.
Joined complete graphs.—For the first example, two

complete graphs with N=2 vertices are joined by a single
edge. We mark a vertex away from this “bridge” so that it is
one of N − 2 ¼ ΘðNÞ possible vertices, as opposed to one
of two vertices on the bridge, which would be a trivial
search problem. In Fig. 2, the marked vertex is colored red,
and identically evolving vertices are the same color.
Intuitively, the bridge restricts probability from moving

between the two complete graphs, so we are effectively
searching on a single complete graph withN=2 vertices and
total probability 1=2. Thus the success probability should
reach 1=2 in time π

ffiffiffiffiffiffiffiffiffi
N=2

p
=2, which is a total runtime of

Θð ffiffiffiffi
N

p Þ with the expected constant number of repetitions to
boost the success probability near 1. This is the same
optimal runtime as the highly connected complete graph,
strongly regular graphs, and hypercube, even though the
vertex or edge and normalized algebraic connectivities
suggest it should be slower. Note this example does not
discredit algebraic connectivity since the hypercube is also
Θð1Þ, but the second example will.
To prove this intuition, note from Fig. 2 that the system

evolves in a five-dimensional subspace, independent of N.
Grouping identically evolving vertices, we get an ortho-
normal basis for this subspace,

jai ¼ jredi

jbi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 2

p
X
i∈blue

jii

jci ¼ jyellowi
jdi ¼ jgreeni

jei ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 1

p
X

i∈white
jii:

Most of the vertices have degree N=2 − 1, except for the
yellow and green vertices, which have degree N=2; for
large N, however, they are asymptotically the same.
Therefore, we assume that the graph is approximately
regular. Then the search Hamiltonian (1) for large N is

FIG. 2 (color online). A graph with 12 vertices constructed by
joining two complete graphs of six vertices by a single edge.

TABLE I. Scalings of single runtimes and success probabilities
for search on d-dimensional cubic lattices by quantum random
walk, and the total runtimes with classical repetitions.

d Single runtime Success probability Total runtime

≥ 5 N1=2 1 N1=2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N logN

p
1= logN

ffiffiffiffi
N

p
log3=2 N

3 N2=3 1=N1=3 N
2 N= logN ðlog2 NÞ=N N2= log3 N
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H ¼ −γ

0
BBBBBBBBBB@

1=γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 2

p
1 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=2 − 2
p

N=2 − 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 2

p
0 0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 2

p
0 1 0

0 0 1 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 1

p

0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 1

p
N=2 − 2

1
CCCCCCCCCCA

;

where the second item in the first row, for example, is from
the adjacency matrix, and it is 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2 − 2

p
to convert

between the normalizations of jai and jbi times the
N=2 − 2 blue vertices that connect to the red vertex.
Figure 5 shows the squared overlaps of jsi and jai with

the eigenstates ofH. For large N, γ takes its critical value of
γc ¼ 1=ðN=2Þ, at which half of jsi is proportional to
jψ0i þ jψ2i (with the other half in jψ1i) and jai ∝ jψ0i −
jψ2i with an energy gap of E2 − E0 ¼ 2=

ffiffiffiffiffiffiffiffiffi
N=2

p
[1].

Comparing this to (2), this is the same as searching on a
complete graph withN=2 vertices and total probability 1=2,

which proves that the success probability reaches 1=2 in
time π

ffiffiffiffiffiffiffiffiffi
N=2

p
=2. This can be seen in Fig. 6.

Simplex of complete graphs.—For the second example,
we replace each of theM þ 1 vertices of anM-simplex with
a complete graph ofM vertices. An example withM ¼ 5 is
shown in Fig. 3; the marked vertex is colored red, and
identically evolving vertices are the same color. Note
the vertices are homogeneous (i.e., the graph is vertex
transitive), and there are N ¼ MðM þ 1Þ total vertices.
More formally, this is a first-order truncated M-simplex
lattice, which has been studied in various statistical mechan-
ics models [14,15]; the infinite-order recursive construction
has also been studied using classical random walks [16].
From Fig. 3, the system evolves in a seven-dimensional

subspace, independent ofM. Grouping identically evolving
vertices, we get an orthonormal basis for this subspace,

TABLE II. The degrees and vertex, edge, algebraic, and normalized algebraic connectivities of various (nearly) regular graphs
with N vertices.

Graph Degree Vertex or edge Algebraic Normalized algebraic

Complete N − 1 N − 1 N N=ðN − 1Þ ¼ Θð1Þ
Strongly regular (type 1) ðN − 1Þ=2 ðN − 1Þ=2 ðN −

ffiffiffiffi
N

p Þ=2 ðN −
ffiffiffiffi
N

p Þ=ðN − 1Þ ¼ Θð1Þ
Strongly regular (Latin square) dð ffiffiffiffi

N
p

− 1Þ dð ffiffiffiffi
N

p
− 1Þ ðd − 1Þ ffiffiffiffi

N
p ðd − 1Þ ffiffiffiffi

N
p

=½dð ffiffiffiffi
N

p
− 1Þ� ¼ Θð1Þ

Hypercube log2 N log2 N 2 2= log2 N ¼ Θð1= logNÞ
d-dimensional cubic 2d 2d ≈4π2=N2=d ≈2π2=dN2=d ¼ Θð1=N2=dÞ
Joined complete ≈N=2 1 Θð1Þ Θð1=NÞ
Simplex complete M ¼ Θð ffiffiffiffi

N
p Þ M ¼ Θð ffiffiffiffi

N
p Þ 1 1=M ¼ Θð1= ffiffiffiffi

N
p Þ

FIG. 3 (color online). A five-simplex with each vertex replaced
with a complete graph of five vertices.
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0
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FIG. 4 (color online). Squared overlaps of jsi and jai with
eigenstates of H for search on the complete graph with
N ¼ 1024.
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jai ¼ jredi

jbi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p
X
i∈blue

jii

jci ¼ jyellowi

jdi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p
X

i∈magenta

jii

jei ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p
X

i∈green
jii

jfi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p
X

i∈brown
jii

jgi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM − 1ÞðM − 2Þp
X

i∈white
jii:

Then the Hamiltonian (1) in this subspace is

H¼−γ

0
BBBBBBBBBBBB@

1=γ
ffiffiffiffiffiffiffi
M1

p
1 0 0 0 0ffiffiffiffiffiffiffi

M1

p
M2 0 0 1 0 0

1 0 0
ffiffiffiffiffiffiffi
M1

p
0 0 0

0 0
ffiffiffiffiffiffiffi
M1

p
M2 0 1 0

0 1 0 0 0 1
ffiffiffiffiffiffiffi
M2

p

0 0 0 1 1 0
ffiffiffiffiffiffiffi
M2

p

0 0 0 0
ffiffiffiffiffiffiffi
M2

p ffiffiffiffiffiffiffi
M2

p
M2

1
CCCCCCCCCCCCA

;

where M1 ¼ M − 1 and M2 ¼ M − 2. The last item in the
sixth row, for example, is from the adjacency matrix, and
it is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 1

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM − 1ÞðM − 2Þp
to convert between the

normalizations of jgi and jfi times theM − 2white vertices
that connect to a brown vertex.
Figure 7 shows the squared overlaps of jsi, jai, and jbi

with the eigenstates of H, and it reveals a novel two-
stage algorithm. First, we let γ equal γc1 ¼ 2=M, which is
0.02 in Fig. 7, because away from this critical value, the
initial equal superposition jsi would approximately be an

eigenstate of H for large N, and then the system would
approximately evolve only by phase multiplication. At this
critical γ, roughly jsi ∝ jψ0i þ jψ1i and jbi ∝ jψ0i − jψ1i
with an energy gap of 4=M3=2 [1]. Comparing this with (2),
the system evolves from jsi to jbi in time πM3=2=4, as
shown in Fig. 8.
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FIG. 5 (color online). Squared overlaps of jsi and jai with
eigenstates of H for search on joined complete graphs with 1024
total vertices.
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FIG. 6. Success probability as a function of time for search on
joined complete graphs with 1024 total vertices.
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FIG. 7 (color online). Squared overlaps of jsi, jai, and jbi with
eigenstates of H for search on a simplex of complete graphs with
M ¼ 100.
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Now we change γ so it equals γc2 ¼ 1=M, which is 0.01
in Fig. 7. While changing γ continuously appears in our
nonlinear (quantum) search algorithms [17,18], such a
discrete change is new. Then roughly jbi ∝ jψ0i þ jψ3i
and jai ∝ jψ0i − jψ3i with an energy gap of E3 − E0 ¼
2=

ffiffiffiffiffi
M

p
[1]. Comparing this with (2), probability moves

from jbi to jai in time π
ffiffiffiffiffi
M

p
=2, as shown in Figs. 8 and 9

with M ¼ 100, where the sudden dip and spike occurs
when switching from the first to the second stage of the
algorithm at π1003=2=4 ≈ 785.40.
Together, the total runtime of this two-stage algorithm is

πM3=2=4þ π
ffiffiffiffiffi
M

p
=2 ¼ ΘðN3=4Þ, which is slower than the

Θð ffiffiffiffi
N

p Þ, Θð ffiffiffiffi
N

p Þ, and Θð ffiffiffiffi
N

p
log3=2NÞ runtimes that vertex

or edge, algebraic, and normalized algebraic connectivites
would suggest by comparison to the (strongly regular)
Latin square graph, hypercube, and four-dimensional cubic
lattice, respectively.
These examples demonstrate that there is not a tight

relationship between any of these measures of connectivity
and the runtime of quantum random walk search algo-
rithms, disproving the intuition that quantum search is fast
as a consequence of high connectivity.
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FIG. 8. Probability at jbi as a function of time for search on a
simplex of complete graphs with M ¼ 100. Probability accumu-
lates during the first stage of the algorithm from t ¼ 0 to
π1003=2=4 ≈ 785.40, and then it quickly leaves during the second
stage, which takes π

ffiffiffiffiffiffiffiffi
100

p
=2 ≈ 15.71 time.
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FIG. 9. Probability at jai (i.e., the success probability) as a
function of time for search on a simplex of complete graphs with
M ¼ 100. During the second stage of the algorithm starting at
t ¼ π1003=2=4 ≈ 785.40 for a time of π

ffiffiffiffiffiffiffiffi
100

p
=2 ≈ 15.75, the

probability quickly accumulates.
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