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We propose and analyze heralded quantum gates between qubits in optical cavities. They employ
an auxiliary qubit to report if a successful gate occurred. In this manner, the errors, which would
have corrupted a deterministic gate, are converted into a nonunity probability of success: once
successful, the gate has a much higher fidelity than a similar deterministic gate. Specifically, we
describe that a heralded, near-deterministic controlled phase gate (CZ gate) with the conditional
error arbitrarily close to zero and the success probability that approaches unity as the cooperativity
of the system, C, becomes large. Furthermore, we describe an extension to near-deterministic
N-qubit Toffoli gate with a favorable error scaling. These gates can be directly employed in quantum
repeater networks to facilitate near-ideal entanglement swapping, thus greatly speeding up the
entanglement distribution.
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Exploiting quantum systems for information processing
offers many potential advantages over classical information
processing like highly secure quantum networks [1–3] and
powerful quantum computers [4–6]. One of the main
challenges for the realization of functional quantum com-
puters is to perform gates with sufficiently high quality so
that the remaining errors can be suppressed by error
correction codes, which makes the computation fault
tolerant [7]. At the same time, applications to long distance
quantum communication can be enabled by quantum
repeaters, which combine probabilistic entanglement gen-
eration over short distances with subsequent entanglement
connection steps [3]. For these protocols, the probabilistic
nature of the entanglement generation is acceptable, but it is
essential that high-fidelity entanglement is achieved con-
ditioned on a heralding measurement. Experimentally,
such high-fidelity entanglement is often much easier to
implement and may be realized in situations where it is
impossible to perform any quantum operations determin-
istically. Here we introduce a similar concept for gate
operations and develop the concept of heralded quantum
gates with integrated error detection. In the resulting gate,
the infidelity, which would be present for a deterministic
gate is converted into a failure probability, which is
heralded by an auxiliary atom. Once successful, the
resulting gate can have an arbitrarily small error. Such
heralded gates could facilitate fault tolerant quantum
computation since detectable errors may be easier to correct
than undetectable errors [8–10]. Alternatively, it can be
directly incorporated into quantum repeater architectures
for long distance quantum communication.
Optical cavities are ideal for conversion between the

stationary gate qubits and flying qubits (photons), which is

fundamental for quantum networks [11–13]. Quantum gates
can, in principle, also be directly implemented in optical
cavities [14], but the experimental requirements for this
are very challenging due to spontaneous emission and
cavity loss. The essential parameter quantifying this is
the cooperativity of the atom-cavity system, C. It has been
argued that directly implementing gates in optical cavities
leads to a poor error scaling 1 − F ∝ 1=

ffiffiffiffi
C

p
, where F is the

fidelity of the gate [15,16]. However, as a result of the
integrated error detection, the heralded gates that we
propose exhibit high fidelities when successful. This
enables efficient entanglement swapping and removes
the necessity of intermediate entanglement purification
in quantum repeaters, thus increasing the distribution rate
significantly. Compared to using other deterministic,
cavity based gates, an increase in the rate of up to 2
orders of magnitude can be achieved for modest cooper-
ativities (<100) and a distance of 1000 km [17].
The basic idea is to use a heralding auxiliary atom in

addition to qubit atoms in the same cavity. One of the
atomic qubit states, e.g., state j1i couples to the cavity
mode while j0i is completely uncoupled [see Fig. 1(a)].
Such a system has previously been considered for two-
qubit gates [16,18–21], multiqubit gates [18,22], and
photon routing [23]. If any of the qubit atoms is in state
j1i, the cavity resonance is shifted compared to the bare
cavity mode, which can be exploited to make a gate
between two or more qubits by reflecting single photons
off the cavity [18]. The efficiency of such schemes,
however, is limited by photon losses, inefficient detectors
and nonideal single photon sources [21,23]. We circumvent
these problems by introducing an auxiliary atom in the
cavity to serve as both an intracavity photon source and a
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detector. As opposed to previous heralded gates in optical
cavities, which relied on the null detection of photons
leaving the cavity [24–26], the final heralding measurement
on the atom can then be performed very efficiently.
In our approach, the auxiliary atom has two metastable

states jgi; jfi, which can be coupled through an excited
state jEi [see Fig. 1(a)]. We assume the jEi ↔ jfi
transition to be energetically close to the cavity frequency
and to be a nearly closed transition, so that we need to drive
the jgi → jEi transition, e.g., with a two-photon process
(see below). The gate can be understood through the phase
evolution imposed on the atoms. We consider adiabatic
excitation of the auxiliary control atom via the stimulated
Raman adiabatic passage [27,28], driven by an external
driving pulse with Rabi frequency ΩðtÞ and a coupling to
the cavity photon gf. In the case when all the qubit atoms
are in the noncoupled states j00…0i, an adiabatic excita-
tion will result in a dark state ∼gfj0; gi − Ωj1; fi with zero
energy and vanishing phase. Here the number refers to the
number of cavity photons. However, the qubit statesΨ with
at least one of the qubit atoms in the coupled state, results in
a cavity-induced shift of the state j1; f;Ψi, which in turn,
causes an ac Stark shift and dynamical phase to be
imprinted into the jg;Ψi state after the driving pulse is
turned off. All states but the completely uncoupled qubit
state j00…0i will thus acquire a phase, the magnitude of
which depends on the length of the driving pulse. With an
appropriate pulse length and simple single qubit rotations,
we can use this to realize a general N-qubit Toffoli gate or a
control-phase (CZ) gate.
Naively, the gates will be limited by errors originating

from cavity decay and spontaneous emission from the
atoms, which carry away information about the qubit state.
These errors are, however, detectable since the auxiliary
atom will be trapped in state jfi if either a cavity excitation
or an atomic excitation is lost. Conditioning on detecting
the auxiliary atom in state jgi at the end of the gate thus
rules out the possibility of any dissipative quantum jumps

having occurred during the gate. As a result, the conditional
fidelity of the gate is greatly enhanced at the modest cost of
a finite but potentially low failure probability.
We now analyze the performance of the gates and derive

the success probabilities, gate times, and gate errors (see
Table S1 in [29]) The Hamiltonian in a proper rotating
frame is (see Fig. 1)

Ĥ ¼ ΔEjEihEj þ gfðâjEihfj þ H:c:Þ þ V̂ þ V̂†

þ
X
k

Δejeikhej þ gðâjeikh1j þ H:c:Þ; ð1Þ

where k labels the qubit atoms (ℏ ¼ 1), 2V̂ ¼ ΩjEihgj and
we have assumed that all couplings (g;Ω) are real. We have
defined ΔE ¼ ωE − ωg − ωL, and Δe ¼ ωe − ωg − ωL þ
ωf − ω1, where ωL is the laser frequency and otherwise ωx

is the frequency associated with level x. We describe
the cavity decay and atomic spontaneous emission with
Lindblad operators so that L̂0 ¼

ffiffiffi
κ

p
â corresponds to the

cavity decay, L̂f ¼ ffiffiffiffiffi
γf

p jfihEj to the decay of the excited

state of the auxiliary atom, and L̂k ¼ ffiffiffi
γ

p j ~oikhej describes
the decay of the excited qubit states to some arbitrary
ground state j ~oi. The nature of j ~oi is not important for the
dynamics of the gates and it may or may not coincide with
j0i or j1i.
We assume a weak driving pulse justifying for a

perturbative treatment of V̂ using the formalism of
Ref. [31]. In the perturbative description, we adiabatically
eliminate the coupled excited states of the atoms and the
cavity (assuming Ω2=ΔE ≪ ΔE and Ω ≪ g), which leads
to an energy shift of the ground states but otherwise
conserves them since the Hamiltonian cannot connect
different unexcited states without decay. The dynamics
are therefore described by an effective Hamiltonian,
Ĥeff ¼ jgihgjPnΔnP̂n, where

Δn ¼ Re

(
− Ω2

4γ ½ðΔe
γ − i=2Þiþ 2nC�

ð2 Δe
γ − iÞ½ð2 ΔE

γ − iÞi=4þ C� þ ð2 ΔE
γ − iÞnC

)

ð2Þ

and P̂n projects on the states with n qubits in state j1i. For
simplicity, we have assumed that the auxiliary atom is
identical to the qubit atoms such that gf ¼ g and γf ¼ γ
(see [29] for a more general treatment) and we have defined
the cooperativity C ¼ g2=γκ. We consider the limit C ≫ 1
and from Eq. (2) we find that the energy shift, in the case
when all qubit atoms are in j0i, becomes very small
Δ0 ∼ ΔEΩ2=ð16γ2C2Þ → 0; i.e., we drive into a zero
energy dark state as mentioned in the description above.
On the contrary, for n > 0, the C in the nominator of Δn
reflects that the coupling of the qubit atoms shifts the cavity
resonance and as a result an ac stark shift of ∼Ω2=ΔE is
introduced. Furthermore, we find that in the effective

FIG. 1 (color online). (a) Level structure of the qubit atoms.
Only state j1i couples to the cavity and we assume that the
excited level decays to some level j ~oi, possibly identical to jfi or
j0i. (b) Level structure of the auxiliary atom and the transitions
driven by the weak laser (Ω) and the cavity (gf). We assume that
jEi ↔ jfi is a closed transition, i.e., γg ¼ 0.
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evolution, errors caused by spontaneous emission or cavity
decay (L̂0; L̂f; L̂k) project the system out of the effective
space into orthogonal subspaces, which allows for an
efficient error detection by measuring the ancilla atom.
The dynamics described by Ĥeff can be used to imple-

ment a Toffoli gate. Assuming the qubit atoms to be on
resonance (Δe ¼ 0) and having ΔE ∼ γ

ffiffiffiffi
C

p
gives energy

shifts Δn>0∼Ω2=ð4γ ffiffiffiffi
C

p Þ while Δ0 ∼OðΩ2=C3=2Þ. Hence,
j00…0i is the only state that remains unshifted and we can
choose a gate time of tT ∼ 4π

ffiffiffiffi
C

p
γ=Ω2 to make a Toffoli

gate. By conditioning on measuring the auxiliary atom in
state jgi at the end of the gate, the detectable errors from
cavity decay and spontaneous emission only reduce the
success probability instead of reducing the fidelity.
Consequently, the fidelity becomes limited by more subtle,
undetectable errors (see Ref. [29]). The dominant error
originates from the qubit dependent decay rate Γn of
jgi → jfi. As we demonstrate in Ref. [29], this leads to
a fidelity lower bounded by 1 − F ≲ 0.3=C, with a success
probability of Ps ∼ 1 − 3=

ffiffiffiffi
C

p
. This is a substantial

improvement over the leading error in the case of deter-
ministic cavity-assisted gates. For generic states, the
fidelity can even be markedly higher, and improving with
increasing particle number N [29].
In the special case of only two qubits, the Toffoli gate is

referred to as a CZ gate, and in this case, we can even
improve the gate to have an arbitrarily small error by
combining it with single qubit rotations. For the general
Toffoli gate discussed above, we needed Δe ¼ 0 to ensure
the correct phase evolution, but making the single qubit
transformations j0i→ e−iΔ0t=2j0i and j1i→ e−iðΔ1−Δ0Þt=2j0i,
at the end of a driving pulse of length tCZ¼jπ=
ðΔ2−2Δ1þΔ0Þj, ensures the right phase evolution of the
CZ gate without any constraints onΔe. Hence, it is possible
to tune Δe to eliminate the detrimental effect of having a
qubit dependent decay rate. Choosing ΔE¼ðγ=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4Cþ1
p

and Δe ¼ 1
2
Cγ2=ΔE ensures Γ0 ¼ Γ1 ¼ Γ2, and thus

removes all dissipative errors from the heralded gate.
The conditional error is then limited only by nonadiabatic
effects, which can, in principle, be made arbitrarily small by
reducing the driving strength. The success probability is
1 − Ps ∼ 6=

ffiffiffiffi
C

p
in the limit C ≫ 1 [see Fig. 2(a)]. We thus

have a heralded two-qubit gate with an arbitrarily small
error and a success probability that can approach 1 (it is
possible to decrease the scaling factor of the probability
from ∼6 to ∼3.4 at the expense of an error scaling as 1=C
by tuning ΔE;Δe).
We now consider the gate time. The gate time of the

Toffoli gate is tT ∼ 4π
ffiffiffiffi
C

p
γ=Ω2 and for the CZ gate we have

tCZ ∼ 15π
ffiffiffiffi
C

p
γ=ð2Ω2Þ for C ≫ 1. Since tCZ > tT we focus

on tCZ. The gate time is set by the strength (Ω) of the
driving pulse, which is limited by nonadiabatic errors. This
is investigated in the Supplemental Material where we also
verify our analytical results numerically [29]. Assuming

realistic parameters of κ ¼ 100γ [23,32], we find that a
driving of Ω ¼ ffiffiffiffi

C
p

γ=4 keeps the nonadiabatic error of
the gate below 4 × 10−5 for C ≤ 1000. The gate times
decreases as 1=

ffiffiffiffi
C

p
as shown in Fig. 2(a). For a cooper-

ativity of 100 the gate time is ≈1 μs for typical atomic
decay rates.
So far, we have assumed a model where there is no decay

from jEi → jgi. In real atoms, there will, however, always
be some decay jEi → jgi with a decay rate γg > 0. The
result of such an undetectable decay is that both the CZ gate
and the Toffoli gate will have an error ∼γg=ðγ

ffiffiffiffi
C

p Þ. To make
this error small, it is thus essential to suppress the branching
ratio γg=γ. Below we show how to suppress γg by driving
the jgi → jEi transition with a two-photon process. As a
result, we realize a CZ gate with an error arbitrarily close to
zero and a Toffoli gate with an error scaling as 1=C even for
a realistic atomic system.
Specifically we think of a level structure for the auxiliary

atom, shown in Fig. 3, where we still assume jEi ↔ jfi to
be a closed transition. For simplicity, we have also assumed
jE2i ↔ jgi to be a closed transition. Such a level structure
could, e.g., be realized in 87Rb as shown in Fig. 3. We
assume that a microwave field couples the two excited
states such that we can have a two-photon transition from
jgi → jEi and that Ω is small, allowing for a perturbative
treatment of the coupling. Thus we can map the system to a
simple three-level atom with levels jgi; jEi, and jfi and a
decay rate ~γg and drive ~Ω between jgi and jEi, determined
by the two-photon driving process as shown in Fig. 3. The
dynamics are thus similar to what we have already
described for the simple three-level atom except that we
have the extra decay ~γg that introduces an error in the gates
∼ð~γg=γÞ=

ffiffiffiffi
C

p
, as previously described. In the limit C ≫ 1,
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FIG. 2 (color online). (a) Failure probability (1 − Ps, left axis)
and gate time (tCZ, right axis) as a function of the cooperativity
(C) for the CZ gate. The gate time is in units of the inverse
linewidth 1=γ of the qubit atoms. We have assumed a driving of
Ω ¼ ffiffiffiffi

C
p

γ=4. (b) Gate error as a function of the detuning ΔE2 in
the two-photon-driven CZ gate for C ¼ 10, 20, 50, and 100. We
have assumed that ΩMW ¼ 4γC1=4 and that γg ¼ γ. The gate error
decreases as γ2=Δ2

E2 and is independent of C. We have assumed
Ω ∼ ΔE2=8 resulting in a gate time ∼400=γ. Solid (dashed) lines
are analytical results and symbols are numerical simulations
(see [29]). For both plots, we have assumed κ ¼ 100γ.
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we find ~γg=γ ∼ ðγgΩ2
MW=4γΔ2

E2Þ. Thus by increasing ΔE2,
we can, in principle, make these errors arbitrarily small.
The error of the CZ gate for different ΔE2 is shown in
Fig. 2(b), assuming an initial state of ðj0i þ j1iÞ⊗2. Note
that in order to prevent an increasing scattering probability
of level jE2i, we need to have ΩMW ∝ C1=4 resulting in a
gate error that is independent of the cooperativity [29].
The success probability and time of the gates are the same
as before with Ω → ~Ω ∼ ðΩMWΩ=2ΔE2Þ. With similar
considerations about the validity of our perturbation as
before, we find that for realistic parameters, we can use
Ω ¼ ΔE2=8, ΩMW ∼ 4γC1=4 resulting in a gate time of
∼10 μs for typical atomic decay rates and C≲ 1000 [29].
As an example implementation, we consider ultracold

87Rb atoms coupled to nanophotonic cavities [23,32].
There are some additional errors originating from the
extra states in the 87Rb atoms in this case. In Ref. [29], we
treat these errors and find that with a detuning of ΔE2 ¼
100γ and a cooperativity of C ≈ 100, a heralded CZ gate
with ∼67% success probability and a heralded error of
≈10−3 can be realized in ≈10 μs time. This justifies
neglecting atomic decoherence which is typically much
slower. Alternatively, the gate can be implemented with
atomlike solid-state qubits such as nitrogen-vacancy and
silicon-vacancy centers in diamond [33]. These systems
can exhibit closed transitions and long-lived electronic
spin states which are the essential requirement for the
gate [34], while high cooperativities are possible in
diamond nanocavities [35]. A particular advantage of
such a system is the long-lived nuclear spin degrees of
freedom, which allows each of the color centers to act as a
multiqubit quantum network node [36]. By entangling
electronic spins via the heralded gate, a high-fidelity,
fully deterministic gate can subsequently be performed
on qubits stored in nuclear spins [16].

As a particular application, we consider a quantum
repeater where entanglement is first created in small seg-
ments (links), which are subsequently connected using
entanglement swapping [37]. By organizing the repeater in
a tree structure, the probabilistic nature of the gate can be
efficiently circumvented. The success rate of distributing
entanglement across the total distance L, scales as
∼ðL=L0Þ1−log2ð3=pÞ, where p < 1 is the success probability
of the swap, L is the total distribution distance and L0 is the
length between the links [17] (note that in the limit p → 1,
the above expression underestimates the rate, e.g., for
p ¼ 1 the actual rate is ∼3 times faster for 128 links).
This is a substantial improvement over direct transmission
where the success rate scales exponentially with L. For a
realization with nuclear spin memories where the swap
can be performed deterministically, the rate can scale even
better as ∼log2ðL=L0Þ−1. In order to maintain the favorable
scaling without resorting to time consuming purification,
the total number of links Nmax should be kept below
Nmax ∼ − lnðFfinalÞ=ðϵ0 þ ϵgÞ, where Ffinal is the required
fidelity of the final distributed pair and ϵ0; ϵg ≪ 1 are the
errors of the initial entanglement generation and the
entanglement swapping, respectively. Thus, it is essential
that the errors are kept small, which can be obtained with
the heralded gate.
In conclusion, we have introduced a heralded two-qubit

quantum gate with a conditional fidelity arbitrarily close to
unity and an N-qubit Toffoli gate with an error scaling as
1=C. The gates have a built-in error detection process,
which removes the necessity of extracting the error by the
more complicated process of entanglement purification or
quantum error correction. Our gate is designed for the
specific case of optical cavities, and allows exploiting
realistic systems for quantum communication, even though
the error rate would inhibit this with deterministic gates.
Similar advantages can be realized in other systems such as
those based on circuit QED, where certain errors could be
heralded and thus alleviate the daunting requirements of
fault tolerant computation.
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